首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, employing the homogenization theory and the microscopic bifurcation condition established by the authors, we discuss which microscopic buckling mode grows in elastic honeycombs subject to in-plane biaxial compression. First, we focus on equi-biaxial compression, under which uniaxial, biaxial and flower-like modes may develop as a result of triple bifurcation. By forcing each of the three modes to develop, and by comparing the internal energies, we show that the flower-like mode grows steadily if macroscopic strain is controlled, while either the uniaxial or biaxial mode develops if macroscopic stress is controlled. Second, by analyzing several cases other than equi-biaxial compression, it is shown that a second bifurcation from either the uniaxial or biaxial mode to the flower-like mode, which is distorted, occurs under biaxial compression in a certain range of biaxial ratio under macroscopic strain control. Finally, the possibility of macroscopic instability under biaxial compression is discussed.  相似文献   

2.
Introducing hierarchy into structures has been credited with improving elastic properties and damage tolerance. Specifically, adding hierarchical sub-structures to honeycombs, which themselves have good-density specific elastic and energy-absorbing properties, has been proposed in the literature. An investigation of the elastic properties and structural hierarchy in honeycombs was undertaken, exploring the effects of adding hierarchy into a range of honeycombs, with hexagonal, triangular or square geometry super and sub-structure cells, via simulation using finite elements. Key parameters describing these geometries included the relative lengths of the sub- and super-structures, the fraction of mass shared between the sub- and super-structures, the co-ordination number of the honeycomb cells, the form and extent of functional grading, and the Poisson’s ratio of the sub-structure. The introduction of a hierarchical sub-structure into a honeycomb, in most cases, has a deleterious effect upon the in-plane density specific elastic modulus, typically a reduction of 40 to 50% vs a conventional non-hierarchical version. More complex sub-structures, e.g. graded density, can recover values of density specific elastic modulus. With careful design of functionally graded unit cells it is possible to exceed, by up to 75%, the density specific modulus of conventional versions. A negative Poisson’s ratio sub-structure also engenders substantial increases to the density modulus versus conventional honeycombs.  相似文献   

3.
4.
Jin Zhang 《Meccanica》2018,53(11-12):2999-3013
Using molecular dynamics (MD) simulations and Eringen’s nonlocal elasticity theory, in this paper we comprehensively study the small-scale effects on the buckling behaviours of carbon honeycombs (CHCs). The MD simulation results show that the small-scale effects stemming from the long-range van der Waals interaction between carbon atoms can significantly affect the buckling behaviours of CHCs. To incorporate the small-scale effects into the theoretical analysis of the buckling of CHCs, we develop a nonlocal continuum mechanics (CM) model by employing Eringen’s nonlocal elasticity theory. Our nonlocal CM model is found to fit MD simulations well by setting the nonlocal parameter in the nonlocal CM model as 0.67. It is shown in our MD-based nonlocal CM model that when the cell length of CHCs is smaller than 7.93 Å the influence of small-scale effects on the bucking of CHCs becomes unnegligible and the small-scale effects can greatly reduce the critical buckling stress of CHCs. This reduction in critical buckling stress induced by the small-scale effects becomes more significant as the length of the cell wall decreases. Moreover, CHCs are found to display two different buckling modes when they are under different states of loading. The critical condition for the transition between these two buckling modes of CHCs can be greatly affected by the small-scale effects when the vertical cell wall and the inclined cell wall of CHCs have different lengths.  相似文献   

5.
胞元微拓扑结构对蜂窝材料面内冲击性能的影响   总被引:1,自引:0,他引:1  
刘颖  张新春 《爆炸与冲击》2008,28(6):494-502
研究了面内冲击载荷作用下胞元微拓扑结构对蜂窝材料动态冲击性能的影响。首先,在胞元边长、厚度一致的条件下,讨论了不同形状胞元、以及胞元形状相同但排列方式不同的蜂窝材料的动态冲击性能,并给出了试件及其微结构的动态演化过程。在此基础上,讨论了胞元微观排列方式对蜂窝材料的能量吸收能力的影响。计算结果表明,除了胞元基本结构参数(边长、壁厚等),胞元形状及排布方式也是影响蜂窝材料动态性能的重要因素。由于三角形单胞的稳定性,三角形填充蜂窝材料与四边形填充蜂窝材料相比,表现出更强的能量吸收能力。而交错排布则对应着更加均匀的变形和稳定的平台区。同时,局部拓扑结构的变化,交错排布的试件在冲击压缩的过程中表现出独特的颈缩现象。此结论将为蜂窝材料微结构的动力学优化设计提供指导和依据。  相似文献   

6.
缺陷分布不均匀性对蜂窝材料面内冲击性能的影响   总被引:2,自引:1,他引:1  
刘颖  张新春 《爆炸与冲击》2009,29(3):237-242
利用显式动力有限元方法数值讨论了缺陷(胞壁缺失)分布不均匀性对蜂窝材料面内冲击性能的影响。首先,参考理想六边形蜂窝材料在不同冲击速度下的变形特性,将蜂窝材料划分成9个区域,在此基础上讨论了缺陷分布在不同区域时对蜂窝材料面内冲击性能的影响。研究表明,在冲击载荷作用下,除了缺失率以外,蜂窝材料的面内冲击性能也依赖于缺陷的分布,且在中低冲击速度时表现出更高的敏感性。随着缺失率的增加,蜂窝材料的平台应力明显减小,而平台应力对缺失率及冲击速度的敏感性依赖于缺陷的位置。该结论对蜂窝材料的安全性评估及动力学优化设计具有一定的指导意义。  相似文献   

7.

为了研究冲击载荷作用下考虑应力波效应弹性矩形薄板的动力屈曲,根据动力屈曲发生瞬间的能量转换和守恒准则,导出板的屈曲控制方程和波阵面上的补充约束条件,真实的屈曲位移应同时满足控制方程和波阵面上的附加约束条件。满足上述条件,建立了该问题的完整数值解法,对屈曲过程中冲击载荷、屈曲模态和临界屈曲长度之间的关系进行研究,定量计算了横向惯性效应对提高薄板动力屈曲临界应力的贡献。研究表明:板的厚宽比一定时,临界屈曲长度随冲击载荷的增大而减小;由于屈曲时的横向惯性效应,应力波作用下薄板一阶临界力参数是相应边界板的静力失稳临界力参数的1.5倍;随着边界约束逐渐减弱,板临界力参数逐渐减小,动力特征参数逐渐增大。

  相似文献   

8.
9.
10.
The characteristic-value analysis of plastic dynamic buckling is presented for columns under the action of elastoplastic compression wave caused by an axial-step load. Two critical conditions constituting a dynamic instability criterion are derived on the basis of transformation and conservation of energy. The governing equations, the boundary conditions and the continuity conditions derived by the use of the first critical condition are the same as those given by the adjacent-equilibrium criterion and are insufficient for determining two characteristic parameters involved in the governing equations. A supplementary restraint equation for buckling deformations at the plastic-wave front and the elastic-wave front is derived by the use of the second critical condition. Then, a couple of characteristic equations for two characteristic parameters are derived on the condition that the governing equations have non-trivial solutions satisfying the boundary conditions, the continuity conditions and the supplementary restraint equation. The critical-load parameters, dynamic characteristic parameter (exponent parameter of inertia term) and dynamic buckling modes are calculated from the solutions of the characteristic equations.  相似文献   

11.
Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material(FGM) circular plates with inplane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.  相似文献   

12.
The present paper deals with dynamic, coupled buckling of long, prismatic columns simply supported at the ends. This investigation concerns thin-walled structures of a square cross-section with or without intermediate stiffeners under in-plane pulse loading. The dynamic load of a rectangular shape has been assumed in the analysis. The structures are composed of rectangular plates interconnected along longitudinal edges. A plate model is adopted in the analysis. The material of the structure is isotropic. The problem has been investigated on the basis of the disturbance theory. The dynamic critical load factor DLF has been determined using the Budiansky and Hutchinson criterion. The results obtained with the analytical-numerical method (ANM), which employs the asymptotic perturbation theory, have been compared with the finite element method (FEM).  相似文献   

13.
This paper investigates the non-linear in-plane buckling of pin-ended shallow circular arches with elastic end rotational restraints under a central concentrated load. A virtual work method is used to establish both the non-linear equilibrium equations and the buckling equilibrium equations. Analytical solutions for the non-linear in-plane symmetric snap-through and antisymmetric bifurcation buckling loads are obtained. It is found that the effects of the stiffness of the end rotational restraints on the buckling loads, and on the buckling and postbuckling behaviour of arches, are significant. The buckling loads increase with an increase of the stiffness of the rotational restraints. The values of the arch slenderness that delineate its snap-through and bifurcation buckling modes, and that define the conditions of buckling and of no buckling for the arch, increase with an increase of the stiffness of the rotational end restraints.  相似文献   

14.
The mechanism of imperfection sensitivity of elastic-plastic plates under compression is complex as they undergo elastic and/or plastic buckling, dependent on their width-thickness ratio. For elastic buckling, the Koiter power law is an established means to describe the imperfection sensitivity. Yet, for plastic buckling, there is no such an established way to describe it. In this paper, the quadratic power law is advanced to describe imperfection-insensitive plastic buckling behavior. The Koiter power law is extended by implementing the quadratic law so as to describe the elastic and plastic buckling in a synthetic manner. The finite-displacement, elastic-plastic analysis was conducted on simply-supported square plates under compression by varying the plate thickness and the initial deflection of a sinusoidal form. In association with an increase of the plate slenderness parameter (decrease of plate thickness), the predominant buckling is shown to change from (1) plastic buckling to (2) unstable elastic-plastic buckling and to (3) elastic stable bifurcation followed by a maximum point of load. In accordance with the change of the mechanism of buckling, the power law is changed pertinently to describe the complex imperfection sensitivity of the compression plates in a synthetic manner. The extended imperfection sensitivity law is thus advanced as a simple and strong tool to describe the ultimate buckling strength of elastic-plastic plates.  相似文献   

15.
The elastic buckling behavior of rectangular perforated plates was studied by using the finite element method in this study. Circular cutout was chosen at different locations along the principal x-axis of plates subjected to linearly varying loading in order to evaluate the effect of cutout location on the buckling behavior of plates. The results show that the center of a circular hole should not be placed at the end half of the outer panel for all loading patterns. Furthermore, the presence of a circular hole always causes a decrease in the elastic buckling load of plates subjected to bending, even if the circular hole is not in the outer panel.  相似文献   

16.
17.
The nonlinear models of the elastic and elasticlinear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamilton‘s Variational Principle in a uniform temperature field. The unilateral equilibrium equations satisfied by the plastically buckled equilibria are also established. Dynamics and stability of the elastic and plastic plates are investigated analytically and the buckled equilibria are investigated by employing Galerkin-Ritz‘s method. The vibration frequencies, the first critical temperature differences of instability or buckling, the elastically buckled equilibria and the extremes depending on the final loading temperature difference of the plastically buckled equillibria of the plate are obtained. The results indicate that the critical buckling value of the plastic plate is lower than its critical instability value and the critical value of its buckled equilibria turning back to the trivial equilibrium are higher than the value. However, three critical values of the elastic plate are equal. The unidirectional snap-through may occur both at the stress-strain boundary of elasticity and plasticity and at the initial stage of unloading of the plastic plate.  相似文献   

18.
The instability of barrel-shaped vibrations of a vortex ring in an ideal fluid is investigated. These vibrations, stable for a vortex ring with a piecewise-uniform vorticity profile, appear to be unstable for a vortex ring with a smooth vorticity profile. The instability growth rate is found on the basis of the energy balance equation determining the energy transport from perturbations with negative energy in the critical layer to perturbations with positive energy in the rest of the flow. The curvature of the vortex ring, by virtue of which the perturbations with energies of different signs appear to be connected, plays a prominent role in the mechanism under consideration.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 72–78, November–December, 1995.  相似文献   

19.
The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号