共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
Hellen Gabriela Rivera Monestel Ibrahim Saana Amiinu Andrés Alvarado González 蒲宗华 BibiMaryam Mousavi 木士春 《催化学报》2020,(5):839-846
目前,为了有效解决电化学能量转化反应动力学过程缓慢和商业化应用等问题,需要大力提高催化剂的电催化活性和稳定性,并大幅降低贵金属催化剂的用量.通常,铂(Pt)基催化剂对燃料电池的氧还原反应(ORR)和水电解过程的氢析出反应(HER)表现出很高的活性.然而,对于高效的金属-空气电池和水电解装置,其中的氧析出反应(OER)则需要高活性的非Pt电催化剂来降低电化学过电位及提高其对高电位的耐受性.虽然相较于Pt催化剂,IrO2和RuO2等贵金属催化剂表现出了更高的OER活性,然而,它们的稳定性差,难以满足实际应用需求,严重阻碍了其在金属-空气电池和水电解中的应用.通常,Pt对OER的低效催化主要归因于在OER电催化过程中Pt与电解液直接接触,导致Pt表面快速被氧化,形成Pt氧化物(Pt^+4O2和Pt^+2O)层.形成的Pt氧化物对OER不起催化作用,从而降低了Pt的利用率和总的水电解效率.为了避免Pt表面的快速氧化,实现高的OER性能,我们将Pt金属纳米粒子有效地限域在超薄功能多孔碳层内.前期,已有大量的有关金属基ORR和HER催化剂研究证明,这种策略对于稳定金属纳米颗粒非常有效,可有效避免金属催化剂的快速氧化,而且还可抑制金属颗粒迁移和团聚;此外,还有利于增强催化剂的导电性和离子物种的扩散能力,从而提高催化剂的电催化性能.然而,要达到提高金属催化剂OER电催化性能的目的,还需要设计一种具有优良结构的功能化异质原子掺杂多孔碳基限域材料.金属有机框架(MOF),特别是MOF-253,由于具有较高的柔韧性、丰富的孔、可控的几何结构和高比表面积,被认为是制备功能多孔碳基限域材料的理想前驱体.为此,通过结合功能多孔碳基材料的限域作用及MOF-253和超细Pt纳米单晶的优势,本文合成了MOF-253衍生氮掺杂碳(N/C)限域的Pt纳米单晶(Pt@N/C)核壳型电催化剂.制备的Pt-N-C框架不仅具有超薄的氮掺杂活性多孔碳保护层壳体(平均厚度为0.51 nm),还有具高度分散和稳定化的Pt纳米单晶核体;值得指出的是,因受到碳层的限域作用,即使经900℃的高温处理,Pt纳米单晶仍保持了较小的晶体尺寸(平均粒径仅为6.7 nm);此外,该催化剂的Pt载量较低,仅为6.1wt%(Pt@N/C-10).将其作为OER电催化剂,表现出优异的OER性能:在10 mA cm^-2电流密度下,其过电位仅为298 mV,低于商业IrO2催化剂(353 mV);而且,经2000周加速电位扫描后,其电位仅降低19.4 mV,也低于IrO2(23.3 mV).本文很好地证明了通过构建空间限域结构可以有效解决Pt等金属催化剂因表面氧化而导致OER动力学活性和稳定性低的问题. 相似文献
3.
金属/氮/碳催化剂(M/N/C,M=Fe、Co等)是最有发展前景的非贵金属电催化剂之一,其性能依赖于催化剂表面的活性物种密度.通过常规的热解含氮前驱物与金属盐的方法制得的催化剂往往存在金属活性物种被包埋而不能有效利用的缺点.考虑到石墨相氮化碳(g-C3N4)富含类吡啶氮和亚纳米孔腔结构,将g-C3N4包覆在高导电性碳纳米笼(hCNC)表面,进而利用表层g-C3N4的配位和限域作用锚定大量Co^2+离子,获得的Co/g-C3N4/hCNC复合物经热解后形成了活性位高度暴露、导电性好、孔结构丰富的Co/N/C催化剂.800℃热解得到的最优化催化剂在碱性介质中展现出优异氧还原活性,其起始电位(0.97V)与商业Pt/C催化剂相当,且抗甲醇干扰性能和稳定性优异.此项研究提供了一种构建具有高度暴露活性位的M/N/C催化剂的有效策略. 相似文献
4.
5.
Hellen Gabriela Rivera Monestel Ibrahim Saana Amiinu Andrés Alvarado González 蒲宗华 BibiMaryam Mousavi 木士春 《催化学报》2020,(5):839-851
目前,为了有效解决电化学能量转化反应动力学过程缓慢和商业化应用等问题,需要大力提高催化剂的电催化活性和稳定性,并大幅降低贵金属催化剂的用量.通常,铂(Pt)基催化剂对燃料电池的氧还原反应(ORR)和水电解过程的氢析出反应(HER)表现出很高的活性.然而,对于高效的金属-空气电池和水电解装置,其中的氧析出反应(OER)则需要高活性的非Pt电催化剂来降低电化学过电位及提高其对高电位的耐受性.虽然相较于Pt催化剂,IrO2和RuO2等贵金属催化剂表现出了更高的OER活性,然而,它们的稳定性差,难以满足实际应用需求,严重阻碍了其在金属-空气电池和水电解中的应用.通常,Pt对OER的低效催化主要归因于在OER电催化过程中Pt与电解液直接接触,导致Pt表面快速被氧化,形成Pt氧化物(Pt+4O2和Pt+2O)层.形成的Pt氧化物对OER不起催化作用,从而降低了Pt的利用率和总的水电解效率.为了避免Pt表面的快速氧化,实现高的OER性能,我们将Pt金属纳米粒子有效地限域在超薄功能多孔碳层内.... 相似文献
6.
利用水解乙烯基咪唑鎓硝酸盐([Hvim]NO3)作为发泡剂和一次氮源,在碳化过程中实现材料自发泡。创造性地引入二次氮源三聚氰胺(C3H6N6),通过调控一次、二次氮源比例和碳化温度,制备得到氮掺杂泡沫碳材料(HxMy-T,其中x:y为一次和二次氮源的质量比,T对应不同的碳化温度)。该方法提升了催化剂的氮掺杂含量,构建了更多有利于氧还原反应(ORR)的活性氮位点。电镜结果显示,催化剂H1M1-1000呈现出典型的泡沫碳孔洞结构和丰富的层状褶皱结构;X射线光电子能谱测试结果表明,该样品具有较高的活性氮含量(原子分数6.77%),吡啶氮和石墨氮的原子分数分别高达22.23%和55.59%;电化学测试结果表明,该样品在碱性环境中的半波电位为0.834 V(vs RHE),与商业Pt/C相当,且具有优于商业Pt/C的抗甲醇性能和稳定性。 相似文献
7.
氧还原反应是燃料电池的核心,开发高性能催化剂一直是燃料电池技术面临的严峻挑战. 近年来,热解M-N-C催化剂的发展和以金属有机骨架材料为前驱体的运用让非贵金属氧还原催化剂的性能大幅度提升,但催化活性位点、反应机理等方面仍不甚清晰,需要分子水平上进一步的研究. 在这里,作者总结了本课题组近些年来在氧还原方向上的研究成果,首先是对催化剂活性位点进行的相关探索,提出了新的活性位点结构,为开发新型催化剂提供了帮助,并对金属氮碳催化剂进行了细致的微观调控,探讨了最佳的合成方法;其次开发了高效的双原子Co2N5催化剂,并在理论计算的指导下合成出了更为高效的FeCo双原子催化剂,具备了替代铂基催化剂的性能;最后针对芬顿反应引发的稳定性问题而开发的低芬顿反应活性的单原子Cr和单原子Ru催化剂,表现出了较高的活性和稳定性,为解决催化剂实际应用问题开辟了新的研究思路与方向. 作者相信,通过对催化剂活性位点的不断认知和对新型催化剂的不断开发,终会让非贵金属催化的商业化应用成为现实. 相似文献
8.
PEMFC催化剂的研究:自制Pt/C电催化剂的性质 总被引:2,自引:0,他引:2
研究了一种用于质子交换膜燃料电池(PEMFC)的自制Pt/C电催化剂(标记为THYT-1)的物理化学和电化学性质.将THYT-1电催化剂与E-TEK公司的同类电催化剂的组成、形态及电催化性能进行了比较.单电池测试结果显示, THYT-1的电催化性能优于E-TEK电催化剂. CV测试结果表明CO在这两种电催化剂上的电氧化性能相近;TEM分析表明两种催化剂上Pt晶粒在炭载体上呈均匀分布,平均粒径均为2~3 nm; XPS和XRD测试结果表明两种催化剂中Pt主要以金属态存在.这些数据表明THYT-1催化剂的物理化学性质与E-TEK公司的相类似. 相似文献
9.
10.
采用微波法在氨气气氛下快速加热石墨烯(G)制备了含氮量在4.05 wt%-5.47 wt%的掺氮石墨烯(NG). 将上述的掺氮石墨烯用作碱性电解质条件下的氧还原电催化剂,起始还原电势为0.17 V(vs SHE),接近商用碳载铂催化剂的0.21 V(vs SHE). 采用透射电子显微镜、拉曼光谱和X射线光电子能谱研究了掺氮石墨烯的形貌、结构和掺杂氮原子的键合方式. 结果发现,掺氮石墨烯的氧还原起始电位随着石墨氮原子含量的提高而上升,说明石墨类型的氮含量是影响其氧还原催化活性的关键因素. 实验结果表明,微波法快速制备的掺氮石墨烯在碱性条件下表现出较高的氧还原催化活性,具有作为碱性燃料电池阴极催化剂的潜力. 相似文献
11.
Biraj Jyoti Borah Dr. Himadri Saikia Chiranjita Goswami Kumar Kashyap Hazarika Prof. Yusuke Yamada Dr. Pankaj Bharali 《ChemCatChem》2019,11(15):3522-3529
Design of high-performance non-Pt electrocatalyst for fuel cell applications is greatly anticipated. Herein, we have developed a unique half-embedded and half-exposed interfacial PdFeCu nanoalloy anchored onto carbon matrix. The stable electronic coupling between the carbon matrix and PdFeCu nanoalloy possess very fast interfacial electron transfer which in turn enhances the electron conductivity. This makes the trimetallic nanoalloy high performing oxygen reduction reaction (ORR) electrocatalyst in both basic and acidic media. The PdFeCu/C nanoalloy exhibits enhanced electrochemically active surface area than various PdFe/C bimetallics as well as benchmark 20 wt% Pt/C and Pd/C. As a result, it offers larger active sites for ORR and eased the electron transport during the electrocatalysis. It exhibits 1.5- and 2.4-fold higher mass activity in comparison to the Pt/C and Pd/C. Furthermore, it exhibits long-term stability and low onset potential compared to those of the other catalysts. Thus, the present investigation shows potential strategy for the design and synthesis of Pt-free electrocatalyst with remarkable catalytic activity and stability. 相似文献
12.
13.
Rongzhen Gao Prof. Dr. Yanhong Yin Fuquan Niu Aili Wang Dr. Shaoyu Li Dr. Hongyu Dong Prof. Dr. Shuting Yang 《ChemElectroChem》2019,6(6):1824-1830
In this work, FeCo/N-doped porous carbon nanosheets (FeCo/NPC) were in-situ synthesised as bifunctional oxygen catalyst following a sodium chloride (NaCl) template-assisted strategy. The results show that this strategy assists in generating a 3D interconnected carbon nanosheets network with hierarchical pores and a larger specific surface area through a stencil effect. X-ray photoelectron spectroscopy (XPS) results show that the Fe 2p3/2 and Co 2p3/2 core-level binding energy (BE) of the FeCo/NPC catalyst exhibits a positive shift compared to monometallic catalysts, which is associated with downshifts of the d-band position of the metal by alloying and weakening of the interaction between oxygenic species and metal surfaces, thereby improving the catalytic activity. The FeCo/NPC catalyst shows excellent electrocatalytic activity for bothoxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solution: a high onset potential of 0.92 V (vs. RHE), only 10 mV difference of half-wave potential comparable with commercial Pt/C (20 wt%), a high current retention of 95.7 % after stability test of 20000 s for ORR and a potential of 1.68 V (vs. RHE) for OER at 10 mA ⋅ cm−2. The high catalytic performance of the FeCo/NPC catalyst and the simplicity of the synthesis method provide a possibility for its practical application in metal-air batteries. 相似文献
14.
采用硼氢化钠还原的方法合成了碳纳米管负载的钯基纳米催化剂(Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag1Sn2/CNT,Pd7Ag2Sn2/CNT和Pd7Ag3Sn2/CNT)。通过XRD,TEM和XPS对其进行了表征,结果表明,相比Pd/CNT和Pd-Ag(或Pd-Sn)催化剂的纳米颗粒,Pd-Ag-Sn催化剂展现出了更小的平均颗粒尺寸(2.3 nm)。此外,还通过循环伏安(CV)和计时电流法(CA)测试了这些催化剂对甲酸氧化的电活性,在酸碱介质中,Pd-Ag-Sn/CNT对甲酸氧化都表现出了更高的电流密度。其中,Pd7Ag2Sn2/CNT催化剂在酸碱介质中的电流密度分别是108.8和211.3 mA·cm-2,相应的Pd质量电流密度高达1 364和2 640 mA·mg-1,远远高于商业Pd/C,表明Pd-Ag-Sn/CNT催化剂对甲酸氧化表现出了极好的电催化活性。 相似文献
15.
《Journal of Energy Chemistry》2014,23(4):498-506
The pyrolyzed carbon supported ferrum polypyrrole(Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid(TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction(ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry(CV) and rotating disk electrode(RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of-1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction(XRD), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C–Sn–C, an additional beneficial factor for the ORR. 相似文献
16.
Oxygen utilization in electrochemical energy generation systems requires to overcome the slow kinetics of oxygen reduction reaction (ORR). Herein, we have outstretched an efficient strategy in order for developing a bioinspired Zn (N4)/sulfur/graphitic carbon composite (Zn‐S‐Gc) with an effective performance for the ORR at low temperature. The catalyst composite was created by attaching the Zn (N4) centers in the form of zinc phthalocyanine on the sulfur‐linked graphitic carbon surface. The most positive ORR onset potential of about 1.00 V versus a reversible hydrogen electrode (RHE) was obtained due to the unique structure of a new catalyst in KOH solution (pH = 13) at low temperature (T = 298 K). The catalyst was evaluated using the rotating‐disk electrode method in the potential range of ?0.02–1.18 V versus RHE. The number of transferred electrons as one of the most important parameters (n > 3.70) is almost constant in a wide range of low overpotentials (0.1–0.6 V), which indicates a more efficient four‐electron pathway from O2 to H2O on the catalyst surface. The estimated Tafel slope in an appropriate range is about ≈ ?133.3 mV/dec at a low current density and E1/2 of the electrocatalyst displays a negative shift of only 11 mV after 10,000 cycles. The mean size of the catalyst centers is on the nanoscale (<50 nm). 相似文献
17.
The pyrolyzed carbon supported ferrum polypyrrole(Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid(TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction(ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry(CV) and rotating disk electrode(RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of-1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction(XRD), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C–Sn–C, an additional beneficial factor for the ORR. 相似文献
18.
Prabu Mani Sharat Devadas Tamilselvi Gurusamy Pitchiah Esakki Karthik Balu P. Ratheesh Kothandaraman Ramanujam Sukhendu Mandal 《化学:亚洲杂志》2019,14(24):4814-4818
Inspired by copper‐based oxygen reduction biocatalysts, we have studied the electrocatalytic behavior of a Cu‐based MOF (Cu‐BTT) for oxygen reduction reaction (ORR) in alkaline medium. This catalyst reduces the oxygen at the onset (Eonset) and half‐wave potential (E1/2) of 0. 940 V and 0.778 V, respectively. The high halfway potential supports the good activity of Cu‐BTT MOF. The high ORR catalytic activity can be interpreted by the presence of nitrogen‐rich ligand (tetrazole) and the generation of nascent copper(I) during the reaction. In addition to the excellent activity, Cu‐BTT MOF showed exceptional stability too, which was confirmed through chronoamperometry study, where current was unchanged up to 12 h. Further, the 4‐electrons transfer of ORR kinetics was confirmed by hydrodynamic voltammetry. The oxygen active center namely copper(I) generation during ORR has been understood by the reduction peak in cyclic voltammetry as well in the XPS analysis. 相似文献