首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In this work, a new rate-dependent interface model for computational analysis of quasi-brittle materials like concrete is presented. The model is formulated on the basis of the inviscid elastoplastic model by [Carol, I., Prat, P.C., López, C.M., 1997. “A normal/shear cracking model. Interface implementation for discrete analysis”. Journal of Engineering Mechanics, ASCE, 123 (8), pp. 765–773.]. The rate-dependent extension follows the continuous form of the classical viscoplastic theory by [Perzyna, P., 1966. “Fundamental problems in viscoplasticity”. Advances in Applied Mechanics, 9, pp. 244–368.]. According to [Ponthot, J.P., 1995. “Radial return extensions for viscoplasticity and lubricated friction”. In: Proceedings of International Conference on Structural Mechanics and Reactor Technology SMIRT-13, Porto Alegre, Brazil, (2), pp. 711–722.] and [Etse, G., Carosio, A., 2002. “Diffuse and localized failure predictions of Perzyna viscoplastic models for cohesive-frictional materials”. Latin American Applied Research (32), pp. 21–31.] it includes a consistency parameter and a generalized yield condition for the viscoplastic range that allows an straightforward extension of the full backward Euler method for viscoplastic materials. This approach improves the accuracy and stability of the numerical solution. The model predictions are tested against experimental results on mortar and concrete specimens that cover different stress paths at different strain rates. The results in this work demonstrate, on one hand, the capabilities of the proposed elasto–viscoplastic interface constitutive formulation to predict the rate-dependency of mortar and concrete failure behavior, and, on the other hand, the efficiency of the numerical algorithms developed for the computational implementation of the model that include the consistent tangent operator to improve the convergence rate at the finite element level.  相似文献   

2.
A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite element framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz (2004) [Journal of the Mechanics and Physics of Solids 52, 2431–2454] of the strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245–2271]. The formulation is based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plasticity theory in the absence of viscous effects. The numerical implementation uses increments of the effective plastic strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model, results are presented for materials containing either voids or rigid inclusions. It is shown how the model predicts increased overall yield strength, as compared to conventional predictions, when voids or inclusions are in the micron range. Furthermore, it is illustrated how the higher order boundary conditions at the interface between inclusions and matrix material are important to the overall yield strength as well as the material hardening.  相似文献   

3.
This paper presents a design sensitivity analysis method by the consistent tangent operator concept-based boundary element implicit algorithm. The design variables for sensitivity analysis include geometry parameters, elastic–viscoplastic material parameters and boundary condition parameters. Based on small strain theory, Perzyna’s elastic–viscoplastic material constitutive relation with a mixed hardening model and two flow functions is considered in the sensitivity analysis. The related elastic–viscoplastic radial return algorithm and the formula of elastic–viscoplastic consistent tangent operator are derived and discussed. Based on the direct differentiation approach, the incremental boundary integral equations and related algorithms for both geometric and elastic–viscoplastic sensitivity analysis are developed. A 2D boundary element program for geometry sensitivity, elastic–viscoplastic material constant sensitivity and boundary condition sensitivity has been developed. Comparison and discussion with the results of this paper, analytical solution and finite element code ANSYS for four plane strain numerical examples are presented finally.  相似文献   

4.
A fibre-reinforced hyperelastic–viscoplastic model using a finite strain Finite Element (FE) analysis is presented to study the expansive growth of cell walls. Based on the connections between biological concepts and plasticity theory, e.g. wall-loosening and plastic yield, wall-stiffening and plastic hardening, the modelling of cell wall growth is established within a framework of anisotropic viscoplasticity aiming to represent the corresponding biology-controlled behaviour of a cell wall. In order to model in vivo growth, special attention is paid to the differences between a living cell and an isolated wall. The proposed hyperelastic–viscoplastic theory provides a unique framework to clarify the interplay between cellulose microfibrils and cell wall matrix and how this interplay regulates sustainable growth in a particular direction while maintaining the mechanical strength of the cell walls by new material deposition. Moreover, the effect of temperature is taken into account. A numerical scheme is suggested and FE case studies are presented and compared with experimental data.  相似文献   

5.
The theory of shakedown is applied to obtain an upper estimation of LCF lifetime of structures. A model of elastic viscoplastic material similar to the Perzyna one with isotropic strain hardening and isotropic damage is adopted. Assumptions: viscoplastic strain rate is proportional to the access of the yield function over zero; the rate of damage evolution is equal to a function of hardening and damage parameters with the coefficient of fluidity, as a factor of proportionality; damage process is coupled with the viscoplastic deformation process; the hardening parameter is equal to accumulated viscoplastic deformation. The yield surfaces form a family of self-similar surfaces with the diameter as the parameter. The shakedown condition of the Melan type is formulated relatively to the initial yield surface. Features of the stress path lead to an equation with min–max problem of the mathematical programming in the left side, which determines a safe value of the virtual residual stress. The equation provides an opportunity to compute the maximal value of the strain hardening parameter possible under the prescribed loading program. This value allows to obtain an upper estimate to safe work time of the structure, which results in a sufficient condition of the structure integrity during the prescribed time period. An example of the developed theory application to resolve various problems arising from designing of structures is considered.  相似文献   

6.
The constitutive equations for plasticity proposed by Voyiadjis [1984] and Voyiadjis & Kiousis [1987] are modified here in order to introduce rate sensitivity in the plastic region. Some of the basic concepts of the theory of viscoplasticity outlined by Naghdi & Murch [1963], Perzyna & Wojno [1966], and Eisenberg & Yen [1981] are used in this work in order to obtain the proposed viscoplastic constitutive model for finite strain deformation analysis.Uniaxial loading-reverse loading tests are conducted so as to check the validity of the proposed constitutive model as well as to determine its material parameters. The model is effectively used in simulating numerically the obtained experimental results at finite strains.  相似文献   

7.
A modelling and simulation approach for plastic deformation effects in curing resins is presented. For this purpose known rheological models of viscoelasticity and viscoplasticity are combined and a thermochemical element is added to account for chemical shrinkage and thermal expansion. The degree of cure of the resin has a major influence on the behaviour of the curing material, and therefore, the material model is formulated depending on the degree of cure. It affects the viscoelastic behaviour as well as the chemical shrinkage and the yield function of the viscoplastic part of the model. For the yield function a von Mises approach with isotropic hardening is chosen, where the initial yield stress as well as the yield surface depends on the degree of cure and the temperature.  相似文献   

8.
循环硬化材料本构模型的隐式应力积分和有限元实现   总被引:1,自引:0,他引:1  
针对新发展的、能够描述循环硬化行为应变幅值依赖性的粘塑性本构模型,讨论了它的数值实现方法。首先,为了能够对材料的循环棘轮行为(Ratcheting)和循环应力松弛现象进行描述,对已有的本构模型进行了改进;然后,在改进模型的基础上,建立了一个新的、全隐式应力积分算法,进而推导了相应的一致切线刚度(Consistent Tangent Modulus)矩阵的表达式;最后,通过ABAQUS用户材料子程序UMAT将上述本构模型进行了有限元实现,并通过一些算例对一些构件的循环变形行为进行了有限元数值模拟,讨论了该类本构模型有限元实现的必要性和合理性。  相似文献   

9.
A temperature-dependent viscodamage model is proposed and coupled to the temperature-dependent Schapery’s nonlinear viscoelasticity and the temperature-dependent Perzyna’s viscoplasticity constitutive model presented in Abu Al-Rub et al., 2009, Huang et al., in press in order to model the nonlinear constitutive behavior of asphalt mixes. The thermo-viscodamage model is formulated to be a function of temperature, total effective strain, and the damage driving force which is expressed in terms of the stress invariants of the effective stress in the undamaged configuration. This expression for the damage force allows for the distinction between the influence of compression and extension loading conditions on damage nucleation and growth. A systematic procedure for obtaining the thermo-viscodamage model parameters using creep test data at different stress levels and different temperatures is presented. The recursive-iterative and radial return algorithms are used for the numerical implementation of the nonlinear viscoelasticity and viscoplasticity models, respectively, whereas the viscodamage model is implemented using the effective (undamaged) configuration concept. Numerical algorithms are implemented in the well-known finite element code Abaqus via the user material subroutine UMAT. The model is then calibrated and verified by comparing the model predictions with experimental data that include creep-recovery, creep, and uniaxial constant strain rate tests over a range of temperatures, stress levels, and strain rates. It is shown that the presented constitutive model is capable of predicting the nonlinear behavior of asphaltic mixes under different loading conditions.  相似文献   

10.
A coupled constitutive model of viscoplasticity and ductile damage for penetration and impact related problems has been formulated and implemented in the explicit finite element code LS-DYNA. The model, which is based on the constitutive model and fracture strain model of Johnson and Cook, and on continuum damage mechanics as proposed by Lemaitre, includes linear thermoelasticity, the von Mises yield criterion, the associated flow rule, non-linear isotropic strain hardening, strain-rate hardening, temperature softening due to adiabatic heating, isotropic ductile damage and failure. For each of the physical phenomena included in the model, one or several material constants are required. However, all material constants can be identified from relatively simple uniaxial tensile tests without the use of numerical simulations. In this paper the constitutive model is described in detail. Then material tests for Weldox 460 E steel and the calibration procedure are presented and discussed. The calibrated model is finally verified and validated through numerical simulations of material and plate perforation tests investigated experimentally.  相似文献   

11.
In this work we discuss a covariant formulation of the finite strain viscoplasticity in a fully coupled thermomechanical setting. The formulation is presented within the framework of the principal axis methodology, which leads to a very efficient numerical implementation. Several numerical simulations, dealing with fully coupled thermomechanical response at large viscoplastic strains and including both strain localization and cyclic loading cases, are presented in order to illustrate a very satisfying performance of the proposed methodology.  相似文献   

12.
13.
混凝土黏塑性动力损伤本构关系   总被引:1,自引:0,他引:1  
李杰  任晓丹  黄桥平 《力学学报》2011,43(1):193-201
从静力弹塑性损伤本构关系的基本框架出发, 综合考虑塑性应变与损伤 演化的率敏感性, 建立了能够较为全面地描述混凝土在动力加载条件下非线性性能的混凝土 黏塑性动力损伤本构模型. 为了考虑塑性应变的率敏感性, 基于Perzyna理论推导了有效应 力空间黏塑性力学基本公式, 采用改进的Perzyna型动力演化方程, 将损伤静力演化方程推 广到动力加载情形. 基于并联弹簧模型, 从概率论的角度推导给出了一维损伤静力演化方程, 并基于能量等效应变的基本概念将其推广到多维损伤演化. 利用数值模拟, 计算得到了 混凝土在不同应变率下的应力应变全曲线, 同时得到了一维动力提高因子和二维动力强度包 络图, 数值结果与试验结果的对比表明了该模型的有效性.  相似文献   

14.
15.
The paper outlines a new constitutive model and experimental results of rate-dependent finite elastic–plastic behavior of amorphous glassy polymers. In contrast to existing kinematical approaches to finite viscoplasticity of glassy polymers, the formulation proposed is constructed in the logarithmic strain space and related to a six-dimensional plastic metric. Therefore, it a priori avoids difficulties concerning with the uniqueness of a plastic rotation. The constitutive framework consists of three major steps: (i) A geometric pre-processing defines a total and a plastic logarithmic strain measures determined from the current and plastic metrics, respectively. (ii) The constitutive model describes the stresses and the consistent moduli work-conjugate to the logarithmic strain measures in an analogous structure to the geometrically linear theory. (iii) A geometric post-processing maps the stresses and the algorithmic tangent moduli computed in the logarithmic strain space to their nominal, material or spatial counterparts in the finite deformation space. The analogy between the formulation of finite plasticity in the logarithmic strain space and the geometrically linear theory of plasticity makes this framework very attractive, in particular regarding the algorithmic implementation. The flow rule for viscoplastic strains in the logarithmic strain space is adopted from the celebrated double-kink theory. The post-yield kinematic hardening is modeled by different network models. Here, we compare the response of the eight chain model with the newly proposed non-affine micro-sphere model. Apart from the constitutive model, experimental results obtained from both the homogeneous compression and inhomogeneous tension tests on polycarbonate are presented. Besides the load–displacement data acquired from inhomogeneous experiments, quantitative three-dimensional optical measurements of the surface strain fields are carried out. With regard to these experimental data, the excellent predictive quality of the theory proposed is demonstrated by means of representative numerical simulations.  相似文献   

16.
In this article, we focus our attention on the relation between instrumented indentation tests and the prediction by means of finite element calculations. To this end, a finite strain viscoplasticity model of Perzyna-type with non-linear isotropic and kinematic hardening is calibrated at experimental data of steel S690QL. A particular concept for conducting uniaxial tensile and compression tests is taken up in order to represent the basic rate-dependent material behavior. In this respect, an algorithmic framework of material parameter identification using finite elements is proposed leading to a two-stage procedure in the case of the underlying rate-dependent constitutive model. On the basis of the termination points of relaxation the rate-independent equilibrium stress state can be identified and all viscous parts of the model are obtained using rate-dependent loading paths. Finally, use is made of finite elements for predicting indentation experiments, which results in a critical view on modeling and parameter identification on the basis of experimental results occurring in instrumented indentation tests.  相似文献   

17.
This study formulates a micromechanical model for predicting effective viscoelastic–viscoplastic responses of composites. The studied composites consist of solid spherical particle reinforcements dispersed in a homogeneous matrix. The particle constituent is assumed linear elastic, while the matrix exhibits combined viscoelastic–viscoplastic responses. The Schapery integral model is used for the 3D isotropic non-linear viscoelastic responses. Two viscoplastic models are considered: the Perzyna model, having a rate-independent yield surface and an overstress function, and the Valanis endochronic model based on an irreversible thermodynamics without a yield surface. The Valanis model is suitable for materials when viscoplastic responses occur at early loadings (small stress levels). A unit-cell model with four particle and polymer sub-cells is generated to obtain homogenized responses of the particle-reinforced composites. Available micromechanical models and experimental data in the literature are used to verify the proposed micromechanical model in predicting effective time-dependent and inelastic responses of composites. Field variables in the homogenized composites are compared to the ones in heterogeneous composites. The heterogeneous composites, having detailed particle geometries, are modeled using finite element (FE) method.  相似文献   

18.
Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant ΔK-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks.A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.  相似文献   

19.
This work presents a model to represent ductile failure (i.e. failure controlled by nucleation, growth and coalescence) of materials whose irreversible deformation is controlled by several plastic or viscoplastic deformation mechanisms. In addition work hardening may result from both isotropic and kinematic hardening. Damage is represented by a single variable representing void volume fraction. The model uses an additive decomposition of the plastic strain rate tensor. The model is developed based on the definition of damage dependant effective scalar stresses. The model is first developed within the generalized standard material framework and expressions for Helmholtz free energy, yield potential and dissipation potential are proposed. In absence of void nucleation, the evolution of the void volume fraction is governed by mass conservation and damage does not need to be represented by state variables. The model is extended to account for void nucleation. It is implemented in a finite element software to perform structural computations. The model is applied to three case studies: (i) failure by void growth and coalescence by internal necking (pipeline steel) where plastic flow is either governed by the Gurson–Tvergaard–Needleman model or the Thomason model, (ii) creep failure (Grade 91 creep resistant steel) where viscoplastic flow is controlled by dislocation creep or diffusional creep and (iii) ductile rupture after pre-compression (aluminum alloy) where kinematic hardening plays an important role.  相似文献   

20.
The present paper considers constitutive modeling of structural foams undergoing large deformations in combination with high deformation rates. In particular, large inelastic compactions is in focus, involving hardening of the material as the point of compaction of the foam is approached, and rate dependent evolution of the plastic deformation. A phenomenological approach is adopted, where the foam is regarded as a gas-filled porous material formulated in the framework of Theory of Porous Media (TPM). In this framework, an elasto-viscoplastic model of Perzyna type is proposed. As an example of model application, an analysis of an impact test of a polymeric foam cube is presented, involving calibration of the model parameters as well as the actual simulation of the impact test using the finite element code LS-DYNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号