首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both shock control bump (SCB) and suction and blowing are flow control methods used to control the shock wave/boundary layer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. A SCB uses a small local surface deformation to reduce the shock-wave strength, while suction decreases the boundary-layer thickness and blowing delays the flow separation. Here a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of SCB and suction and blowing. These flow control methods are used separately or together on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow equations are solved using Roe’s averages scheme and a gradient-based adjoint algorithm is used to find the optimum location and shape of all devices. It is shown that the simultaneous application of blowing and SCB (hybrid blowing/SCB) improves the average aerodynamic efficiency at off-design conditions by 18.2 % in comparison with the clean airfoil, while this increase is only 16.9 % for the hybrid suction/SCB. We have also studied the SWBLI and how the optimization algorithm makes the flow wave structure and interactions of the shock wave with the boundary layer favorable.  相似文献   

2.
The limit cycle oscillation (LCO) behaviors of an aeroelastic airfoil with free-play for different Mach numbers are studied. Euler equations are adopted to obtain the unsteady aerodynamic forces. Aerodynamic and structural describing functions are employed to deal with aerodynamic and structural nonlinearities, respectively. Then the flutter speed and flutter frequency are obtained by V-g method. The LCO solutions for the aeroelastic airfoil obtained by using dynamically linear aerodynamics agree well with those obtained directly by using nonlinear aerodynamics. Subsequently, the dynamically linear aerodynamics is assumed, and results show that the LCOs behave variously in different Mach number ranges. A subcritical bifurcation, consisting of both stable and unstable branches, is firstly observed in subsonic and high subsonic regime. Then in a narrow Mach number range, the unstable LCOs with small amplitudes turn to be stable ones dominated by the single degree of freedom flutter. Meanwhile, these LCOs can persist down to very low flutter speeds. When the Mach number is increased further, the stable branch turns back to be unstable. To address the reason of the stability variation for different Mach numbers at small amplitude LCOs, we find that the Mach number freeze phenomenon provides a physics-based explanation and the phase reversal of the aerodynamic forces will trigger the single degree of freedom flutter in the narrow Mach number range between the low and high Mach numbers of the chimney region. The high Mach number can be predicted by the freeze Mach number, and the low one can be estimated by the Mach number at which the aerodynamic center of the airfoil lies near its elastic axis. Influence of angle of attack and viscous effects on the LCO behavior is also discussed.  相似文献   

3.
Aeroelasticity exists in airfoil with control surface freeplay, which may induce instability in an incompressible flow. In this paper, a nonlinear energy sink (NES) is used to suppress the aeroelasticity of an airfoil with a control surface. The freeplay and cubic nonlinearity in pitch are taken into account. The harmonic balance method is used to analytically determine the limit cycle oscillations (LCOs) amplitudes of the airfoil–NES system. Linear and nonlinear flutter speeds are detected from the airfoil with control surface freeplay. When NES is attached, both the linear flutter speed of airfoil without freeplay and the nonlinear flutter speed of airfoil with a freeplay are increased. Moreover, the LCO amplitude of airfoil is decreased due to NES. Then, the influences of NES parameters on the increase in flutter boundary of airfoil are carefully studied.  相似文献   

4.
Nonlinear dynamic behaviors of an aeroelastic airfoil with free-play in transonic air flow are studied. The aeroelastic response is obtained by using time-marching approach with computational fluid dynamics (CFD) and reduced order model (ROM) techniques. Several standardized tests of transonic flutter are presented to validate numerical approaches. It is found that in time-marching approach with CFD technique, the time-step size has a significant effect on the calculated aeroelastic response, especially for cases considering both structural and aerodynamic nonlinearities. The nonlinear dynamic behavior for the present model in transonic air flow is greatly different from that in subsonic regime where only simple harmonic oscillations are observed. Major features of the responses in transonic air flow at different flow speeds can be summarized as follows. The aeroelastic responses with the amplitude near the free-play are dominated by single degree of freedom flutter mechanism, and snap-though phenomenon can be observed when the air speed is low. The bifurcation diagram can be captured by using ROM technique, and it is observed that the route to chaos for the present model is via period-doubling, which is essentially caused by the free-play nonlinearity. When the flow speed approaches the linear flutter speed, the aeroelastic system vibrates with large amplitude, which is dominated by the aerodynamic nonlinearity. Effects of boundary layer and airfoil profile on the nonlinear responses of the aeroelastic system are also discussed.  相似文献   

5.
A shock control channel (SCC) is a flow control method introduced here to control the shock wave/boundarylayer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. An SCC transfers an appropriate amount of mass and momentum from downstream of the shock wave location to its upstream to decrease the pressure gradient across the shock wave and as a result the shock-wave strength is reduced. Here, a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of the SCC. This flow control method is implemented on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow equations are solved using Roe’s averages scheme and a gradient-based adjoint algorithm is used to find the optimum location and shape of the SCC. The solver is validated against experimental works studying effect of cavities in transonic airfoils. It is shown that the application of an SCC improves the average aerodynamic efficiency in a range of off-design conditions by 13.2% in comparison with the original airfoil. The SCC is shown to be an effective tool also for higher angle of attack at transonic flows. We have also studied the SWBLI and how the optimization algorithm makes the flow wave structure and interactions of the shock wave with the boundary layer favorable.  相似文献   

6.
In this study, an improved nonlinear reduced-order model composed of a linear part and a nonlinear part is explored for transonic aeroelastic systems. The linear part is identified via the eigensystem realization algorithm and the nonlinear part is obtained via the Levenberg–Marquardt algorithm. The impulsive signal is chosen as the training signal for the linear part and the sinusoidal signal is used to determine the order of the linear part. The training signal for the nonlinear part is selected as the filtered white Gaussian noise with the maximal amplitude and frequency range to be designed via the aeroelastic responses. An NACA64A010 airfoil and an NACA0012 airfoil are taken as illustrative examples to demonstrate the performance of the presented reduced-order model in modeling transonic aerodynamic forces. The aeroelastic behaviors of the two airfoils are obtained via computational fluid dynamics to solve the Euler equation and the Navier–Stokes equation, respectively. The numerical results demonstrate that the presented reduced-order model can successfully predict the nonlinear aerodynamic forces with and without viscous flows. Moreover, the presented reduced-order model is capable of capturing the flutter velocity and modeling complex aeroelastic behaviors, including limit-cycle oscillations, beat phenomena and nodal-shaped oscillations at the transonic Mach numbers with high accuracy.  相似文献   

7.
The limit cycle oscillation (LCO) behaviors of control surface buzz in transonic flow are studied. Euler equations are employed to obtain the unsteady aerodynamic forces for Type B and Type C buzz analyses, and an all-movable control surface model, a wing/control surface model and a three-dimensional wing with a full-span control surface are adopted in the study. Aerodynamic and structural describing functions are used to deal with aerodynamic and structural nonlinearities, respectively. Then the buzz speed and buzz frequency are obtained by V-g method. The LCO behavior of the transonic control surface buzz system with linear structure exhibits subcritical or supercritical bifurcation at different Mach numbers. For nonlinear structural model with a free-play nonlinearity in the control surface deflection stiffness, the double LCO phenomenon is observed in certain range of flutter speed. The free-play nonlinearity changes the stability of LCOs at small amplitudes and turns the unstable LCO into a stable one. The LCO behavior is dominated by the aerodynamic nonlinearity for the case with large control surface oscillation amplitude but by the structural nonlinearity for the case with small amplitude. Good agreements between LCO behaviors obtained by the present method and available experimental data show that our study may help to explain the experimental observation in wind tunnel tests and to understand the physical mechanism of transonic control surface buzz.  相似文献   

8.
Compressibility effects are present in many practical turbulent flows, ranging from shock-wave/boundary-layer interactions on the wings of aircraft operating in the transonic flight regime to supersonic and hypersonic engine intake flows. Besides shock wave interactions, compressible flows have additional dilatational effects and, due to the finite sound speed, pressure fluctuations are localized and modified relative to incompressible turbulent flows. Such changes can be highly significant, for example the growth rates of mixing layers and turbulent spots are reduced by factors of more than three at high Mach number. The present contribution contains a combination of review and original material. We first review some of the basic effects of compressibility on canonical turbulent flows and attempt to rationalise the differing effects of Mach number in different flows using a flow instability concept. We then turn our attention to shock-wave/boundary-layer interactions, reviewing recent progress for cases where strong interactions lead to separated flow zones and where a simplified spanwise-homogeneous problem is amenable to numerical simulation. This has led to improved understanding, in particular of the origin of low-frequency behaviour of the shock wave and shown how this is coupled to the separation bubble. Finally, we consider a class of problems including side walls that is becoming amenable to simulation. Direct effects of shock waves, due to their penetration into the outer part of the boundary layer, are observed, as well as indirect effects due to the high convective Mach number of the shock-induced separation zone. It is noted in particular how shock-induced turning of the detached shear layer results in strong localized damping of turbulence kinetic energy.  相似文献   

9.
Peng Li  Yiren Yang  Li Lu 《Meccanica》2014,49(12):2797-2815
This paper is aimed at presenting the nonlinear flutter peculiarities of a cantilevered plate with motion-limiting constraints in subsonic flow. A non-smooth free-play structural nonlinearity is considered to model the motion constraints. The governing nonlinear partial differential equation is discretized in space and time domains by using the Galerkin method. The equilibrium points and their stabilities are presented based on qualitative analysis and numerical studies. The system loses its stability by flutter and undergoes the limit cycle oscillations (LCOs) due to the nonlinearity. A heuristic analysis scheme based on the equivalent linearization method is applied to theoretical analysis of the LCOs. The Hopf and two-multiple semi-stable limit cycle bifurcation bifurcations are supercritical or subcritical, which is dependent on the location of the motion constraints. For some special cases the bifurcations are, interestingly, both supercritical and subcritical. The influence of varying parameters on the dynamics is discussed in detail. The results predicted by the analysis scheme are in good agreement with the numerical ones.  相似文献   

10.
In this paper, the Hopf bifurcations and limit cycle oscillations (LCOs) of an airfoil with cubic nonlinearity in supersonic\hypersonic flow are investigated. The harmonic balance method and multivariable Floquet theory are applied to analyze the LCOs of the airfoil. Four distinct cases of the LCOs response are detected in this system: (I) supercritical Hopf bifurcation, (II) a single subcritical Hopf bifurcation, (III) two subcritical Hopf bifurcations, and (IV) no Hopf bifurcation. Furthermore, the parameter variations domains separating the supercritical and subcritical Hopf bifurcations are presented using singularity theory.  相似文献   

11.
Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave–boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 × 106 are analyzed regarding the origin and nature of the unsteady shock–boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa.  相似文献   

12.
Frequency lock-in phenomenon for oscillating airfoils in buffeting flows   总被引:3,自引:0,他引:3  
Navier-Stokes based computer simulations are conducted to determine the aerodynamic flow field response that is observed for a NACA0012 airfoil that undergoes prescribed harmonic oscillation in transonic buffeting flows, and also in pre-buffet flow conditions. Shock buffet is the term for the self-sustained shock oscillations that are observed for certain combinations of Mach number and steady mean flow angle of attack even in the absence of structural motion. The shock buffet frequencies are typically on the order of the elastic structural frequencies, and therefore may be a contributor to transonic aeroelastic response phenomena, including limit-cycle oscillations. Numerical simulations indicate that the pre-shock-buffet flow natural frequency increases with mean angle of attack, while the flow damping decreases and approaches zero at the onset of buffet. Airfoil harmonic heave motions are prescribed to study the interaction between the flow fields induced by the shock buffet and airfoil motion, respectively. At pre-shock-buffet conditions the flow response is predominantly at the airfoil motion frequency, with some smaller response at multiplies of this frequency. At shock buffet conditions, a key effect of prescribed airfoil motions on the buffeting flow is to create the possibility of a lock-in phenomenon, in which the shock buffet frequency is synchronized to the prescribed airfoil motion frequency for certain combinations of airfoil motion frequencies and amplitudes. Aerodynamic gain-phase models for the lock-in region, as well as for the pre-shock-buffet conditions are suggested, and also a possible relationship between the lock-in mechanism and limit-cycle oscillation is discussed.  相似文献   

13.
The flow around wing 445.6 was modelled using Navier–Stokes equations and S-A model. The wing vibration and flow mesh deformation were computed using a fast dynamic mesh technology proposed by our own group. Wing 445.6 flutter was analysed through a strong coupling between the wing vibration and flow. The reduced flutter velocity was predicted and results are in good agreement with the experimental data. It is found that the subsonic flutter is mainly induced by the flow separation and the transonic and supersonic flutter are mainly caused by the oscillating shock wave and its induced flow separation. The positive aerodynamic work increases due to the oscillating shock wave when the subsonic flow becomes transonic reducing the flutter velocity. While the positive aerodynamic work induced by the oscillating shock wave decreases when the transonic flow becomes supersonic increasing the flutter velocity. That is why the transonic dip exists.  相似文献   

14.
翼型跨声速气动特性的不确定性及全局灵敏度分析   总被引:5,自引:0,他引:5  
针对马赫数和仰角的随机不确定性会导致气动性能波动的现象, 采用非嵌入式的混沌多项式方法对绕NACA0012 翼型跨声速随机气动特性进行不确定性及全局灵敏度分析. 具体分析了飞行状态的不确定性对气动载荷分布、流场及气动力系数的影响并通过全局灵敏度分析找出重要因素. 不确定性分析结果表明翼型上表面的激波以及激波后分离泡是造成气动性能剧烈波动的主要原因. 灵敏度分析结果表明在跨声速区域马赫数对激波处气动性能影响最大, 此外, 虽然马赫数和仰角相互耦合作用对气动力系数贡献比较小, 但对于激波位置处的流场, 这种互耦合作用不可忽略.   相似文献   

15.
针对新设计的超临界翼型,采用风洞实验方法验证和评估了其气动特性。在增压连续式跨音速风洞(NF-6风洞)开展了超临界翼型跨音速特性的实验研究,验证了该翼型设计的压力分布曲线特点。激波位置和波后压力平台区长度表明设计结果和实验结果基本一致,揭示了超临界翼型跨音速的气动特性;阻力发散马赫数达到期望的设计指标,探讨了雷诺数对该翼型气动特性的影响。最后采用升华法实现了翼型表面流动特性的显示。结果表明转捩点约在16%弦长位置。  相似文献   

16.
The complex self-sustained oscillations arising from the interaction of an oblique shock with a flexible panel in both the inviscid and viscous regimes have been investigated numerically. The aeroelastic interactions are simulated using either the Euler or the full compressible Navier–Stokes equations coupled to the nonlinear von Karman plate equations. Results demonstrate that for a sufficiently strong shock limit-cycle oscillations emerge from either subcritical or supercritical bifurcations even in the absence of viscous separated flow effects. The critical dynamic pressure diminishes with increasing shock strength and can be much lower than that corresponding to standard panel flutter. Significant changes in panel dynamics were also found as a function of the shock impingement point and cavity pressure. For viscous laminar flow above the panel without a shock, high-frequency periodic oscillations appear due to the coupling of boundary-layer instabilities with high-mode flexural deflections. For a separated shock laminar boundary layer interaction, non-periodic self-excited oscillations arise which can result in a significant reduction in the extent of the time-averaged separation region. This finding suggests the potential use of an aeroelastically tailored flexible panel as a means of passive flow control. Forced panel oscillations, induced by a specified variable cavity pressure underneath the panel, were also found to be effective in reducing separation. For both inviscid and viscous interactions, the significant unsteadiness generated by the fluttering panel propagates along the complex reflected expansion/recompression wave system.  相似文献   

17.
In this article, the transonic inviscid flow over a deformable airfoil with plunging motion is studied numerically. A finite volume method based on the Roe scheme developed in a generalized coordinate is used along with an arbitrary Lagrangian-Eulerian method and a dynamic mesh algorithm to track the instantaneous position of the airfoil.The effects of different governing parameters such as the phase angle, the deformation amplitude, the initial angle of attack, the flapping frequency, and the Mach number on the unsteady flow field and aerodynamic coefficients are investigated in detail. The results show that maneuverability of the airfoil under various flow conditions is improved by the deformation. In addition, as the oscillation frequency of the airfoil increases, its aerodynamic performance is significantly improved.  相似文献   

18.
The effect of background flow oscillations on a transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to the expansion and compression waves generated at the plate, the flow over the airfoil flow was drastically disturbed. This resulted in the presence of high intensity oscillations of a shock wave and a separation bubble on the suction surface of the airfoil. For relatively large values of the airfoil angle of attack, weak shock waves (transonic sound waves) were periodically shed upstream of the airfoil.This work was supported by Commission of the European Communities (Communit's Action for Cooperation in Science and Technology with Central and Eastern European Countries).The authors wish to thank Mr P. Koperski for his effective assistance in taking the photographs.  相似文献   

19.
Flow characteristics in the vicinity of the flap of a single-slotted airfoil are presented and analysed. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7% of flap chord. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8 × 106 in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The flow was complicated by the presence of a strong, initially inviscid, jet, emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer.Research Engineer, NRC Research AssociateAerospace Engineer  相似文献   

20.
A transonic, high Reynolds number natural laminar flow airfoil is designed and studied. The γ-θ transition model is combined with the shear stress transport(SST)k-w turbulence model to predict the transition region for a laminar-turbulent boundary layer. The non-uniform free-form deformation(NFFD) method based on the non-uniform rational B-spline(NURBS) basis function is introduced to the airfoil parameterization.The non-dominated sorting genetic algorithm-II(NSGA-II) is used as the search algorithm, and the surrogate model based on the Kriging models is introduced to improve the efficiency of the optimization system. The optimization system is set up based on the above technologies, and the robust design about the uncertainty of the Mach number is carried out for NASA0412 airfoil. The optimized airfoil is analyzed and compared with the original airfoil. The results show that natural laminar flow can be achieved on a supercritical airfoil to improve the aerodynamic characteristic of airfoils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号