首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the preparation of polymer nanoparticles covered with phosphorylcholine (PC) groups and the immobilization of proteins in order to observe dual mode bioreactions on the nanoparticles. For the surface modification on the nanoparticles, a water-soluble amphiphilic phospholipid polymer with PC groups as a hydrophilic moiety was synthesized. In this polymer, an active ester group, which can immobilize proteins, was introduced. Using the phospholipid polymer as a solubilizer, poly(L-lactic acid) nanoparticles were prepared from its methylene chloride solution in an aqueous medium by the solvent evaporation method. The diameter of the nanoparticles was ca. 200 nm and the surface was covered with the PC groups and active ester groups. Proteins could immobilize on the nanoparticles under mild conditions by the reaction between the active ester group and amino group in the proteins. Both an antibody and enzyme were immobilized on the nanoparticles and bioreactions such as the antigen/antibody reaction and enzymatic reaction were observed. When an antigen was added to the suspension of the nanoparticles, aggregation of the nanoparticles occurred and then they precipitated. Also, the enzymatic reaction proceeded well when the enzyme substrate was added to the suspension. Based on these results, we provided polymer nanoparticles functionalized with both the antibody and enzyme, and the dual mode bioreactions could occur. We concluded that the novel polymer nanoparticles could be used for nano-/micro-scaled diagnostic and medical treatment systems.  相似文献   

2.
The optical properties of silver nanoparticles embedded in poly(methylmethacrylate) (PMMA) was investigated as well as the influence of silver nanoparticles on the thermal properties of polymer matrix. The average size and particle size distribution of silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were optically characterized using UV-Vis and FTIR spectroscopy. Thermal stability of polymer matrix was improved upon incorporation of small amount of silver nanoparticles. Also, silver nanoparticles have pronounced effect on thermo-oxidative stability of PMMA matrix. The glass transition temperatures of nanocomposites are lower compared to the pure polymer.  相似文献   

3.
We report how to control the self-assembly of magnetic nanoparticles and a prototypical amphiphilic block-copolymer composed of poly(acrylic acid) and polystyrene (PAA-b-PS). Three distinct structures were obtained by controlling the solvent-nanoparticle and polymer-nanoparticle interactions: (1) polymersomes densely packed with nanoparticles (magneto-polymersomes), (2) core-shell type polymer assemblies where nanoparticles are radially arranged at the interface between the polymer core and the shell (magneto-core shell), and (3) polymer micelles where nanoparticles are homogeneously incorporated (magneto-micelles). Importantly, we show that the incorporation of nanoparticles drastically affects the self-assembly structure of block-copolymers by modifying the relative volume ratio between the hydrophobic block and the hydrophilic block. As a consequence, the self-assembly of micelle-forming block-copolymers typically produces magneto-polymersomes instead of magneto-micelles. On the other hand, vesicle-forming polymers tend to form magneto-micelles due to the solubilization of nanoparticles in polymer assemblies. The nanoparticle-polymer interaction also controls the nanoparticle arrangement in the polymer matrix. In N,N-dimethylformamide (DMF) where PS is not well-solvated, nanoparticles segregate from PS and form unique radial assemblies. In tetrahydrofuran (THF), which is a good solvent for both nanoparticles and PS, nanoparticles are homogeneously distributed in the polymer matrix. Furthermore, we demonstrated that the morphology of nanoparticle-encapsulating polymer assemblies significantly affects their magnetic relaxation properties, emphasizing the importance of the self-assembly structure and nanoparticle arrangement as well as the size of the assemblies.  相似文献   

4.
The kinetics of polarization of nanocomposites based on magnetite nanoparticles and polymer matrices (collagen and polystyrene) in an electric field was studied. The polarization and depolarization times of magnetite nanoparticles were determined. The dependence of the maximum electric dipole moment of magnetite nanoparticles on their size was studied. The permittivity of nanocomposites, magnetite nanoparticles and collagen and polystyrene polymer matrices, was determined.  相似文献   

5.
Silver nanoparticles were synthesized by the use of a two-armed polymer with a crown ether core [poly(styrene)]-dibenzo-18-crown-6-[poly(styrene)] based on the flexibility of the polymer chains and the complex effect of crown ether with Ag(+) and Ag. The size of silver nanoparticles could be tailored by controlling the initial concentrations of the polymer and Ag(+), and the molecular weight of the polymer. The emission of silver nanoparticles was blue-shifted, and the intensity of the photoluminescence of silver nanoparticles stabilized by the polymer was significantly increased due to the complex effect between the crown ether embedded in the polymer and the silver nanoparticles.  相似文献   

6.
A photoreactive polymer containing thiocyanate (SCN) groups was employed for the immobilization of gold nanoparticles (AuNP). Upon UV illumination, isothiocyanate (NCS) groups are generated at the surface by photoisomerization. The illuminated areas of the polymer layer containing NCS were selectively modified with 2-aminoethanethiol to give SH terminated thiourea units at the surface. Gold nanoparticles were selectively immobilized in these areas by immersing the polymer surface in a colloidal solution of gold nanoparticles stabilized by citric acid. Depending on the time of immersion, different amounts of gold were deposited on the illuminated areas, while no immobilization of AuNP was observed in the non-illuminated areas. By using photolithographic masks, patterned gold structures (μm scale) were produced on the polymer surface.  相似文献   

7.
Summary. A photoreactive polymer containing thiocyanate (SCN) groups was employed for the immobilization of gold nanoparticles (AuNP). Upon UV illumination, isothiocyanate (NCS) groups are generated at the surface by photoisomerization. The illuminated areas of the polymer layer containing NCS were selectively modified with 2-aminoethanethiol to give SH terminated thiourea units at the surface. Gold nanoparticles were selectively immobilized in these areas by immersing the polymer surface in a colloidal solution of gold nanoparticles stabilized by citric acid. Depending on the time of immersion, different amounts of gold were deposited on the illuminated areas, while no immobilization of AuNP was observed in the non-illuminated areas. By using photolithographic masks, patterned gold structures (μm scale) were produced on the polymer surface.  相似文献   

8.
Summary: This work aimed to produce poly(methyl methacrylate) nanoparticles for use in drug encapsulation. The polymer nanoparticles were produced using miniemulsion polymerization technique. Monomer miniemulsion showed moderate stability and polymer average particle size was about 90 nm. PMMA nanoparticles were tested for toxicity in human leukemic cell strain K562 and they did not show any adverse effect on cell viability. Therefore, poly(methyl methacrylate) nanoparticles are suitable to encapsulate antitumor agents.  相似文献   

9.
Aluminum nanoparticles were coated by epoxy polymer in order to prevent the corrosion reaction. The coverage of the epoxy polymer film was controlled from 0% to 100%, which changed the corrosion rate of nanoparticles quantitatively. The surface of the polymer coating was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the corrosion resistance of these nanoparticles was estimated by the wet/dry corrosion test on platinum (Pt) plate with a NaCl solution. From a TEM analysis, 10 mass% polymer‐coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, 3 mass% polymer‐coated Al was partially covered by a film. In the AFM–Kelvin force microscopy, the potential around the Al particles had a relatively low value by the polymer coating, which indicated that the conductivity of the Al was isolated from Pt plate by the polymer. Both the corrosion and H2 evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of 10 mass% coated sample, there was very little corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Thus, it was found that the corrosion reaction rate of Al nanoparticles could be quantitatively suppressed by the mass% of epoxy coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Iron oxide nanoparticles, in the form of sub-100-nm clusters, were synthesized in the presence of poly(acrylic acid) (PAA) or poly(styrene sulfonate-alt-maleic acid) (PSS-alt-MA) to provide electrosteric stabilization. The superparamagnetic nanoclusters were characterized using a superconducting quantum interference device (SQUID), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and zeta potential measurements. To anchor the polymer shell on the nanoparticle surface, the polymer was cross-linked for a range of cross-linking densities. For nanoclusters with only 12% (w/w) PSS-alt-MA, electrosteric stabilization was sufficient even in 8 wt % NaCl. For PAA, the cross-linked polymer shell was essentially permanent and did not desorb even upon dilution of the nanoparticles for iron oxide concentrations down to 0.014 wt %. Without cross-linking, over half of the polymer desorbed from the particle surfaces. This general approach of the adsorption of polymer stabilizers onto nanoparticles followed by cross-linking may be utilized for a wide variety of cross-linkable polymers without the need to form covalent bonds between the nanoparticles and polymer stabilizer. Thus, this cross-linking approach is an efficient and inexpensive method of stabilizing nanoparticles for large-scale applications, including the electromagnetic imaging of subsurface reservoirs, even at high salinity.  相似文献   

11.
We report the detection and characterisation of polymer nanoparticles using electrochemistry using poly(N‐vinylcarbazole) nanoparticles (PVK NPs) as a model system. These were synthesised using the reprecipitation method. The number of electrons (n=2) transferred per PVK monomer was characterised by drop‐casting method. Sticking and sensing experiments were then conducted, which involve PVK nanoparticle immobilisation on the electrode surface and subsequent oxidative sensing, to enable rapid detection of polymer nanoparticles in aqueous solution. It is shown for the first time, that using this “stick and sense” method, polymer nanoparticles in aqueous solution can be immobilised, preconcentrated and quantified.  相似文献   

12.
Phase behavior of poly(ethylene glycol) (PEG) tethered silica nanoparticles dispersed in PEG hosts is investigated using small-angle X-ray scattering. Phase separation in dispersions of densely grafted nanoparticles is found to display strikingly different small-angle X-ray scattering signatures in comparison to phase-separated composites comprised of bare or sparsely grafted nanoparticles. A general diagram for the dispersion state and phase stability of polymer tethered nanoparticle-polymer composites incorporating results from this as well as various other contemporary studies is presented. We show that in the range of moderate to high grafting densities the dispersion state of nanoparticles in composites is largely insensitive to the grafting density of the tethered chains and chemistry of the polymer host. Instead, the ratio of the particle diameter to the size of the tethered chain and the ratio of the molecular weights of the host and tethered polymer chains (P/N) are shown to play a dominant role. Additionally, we find that well-functionalized nanoparticles form stable dispersions in their polymer host beyond the P/N limit that demarcates the wetting/dewetting transition in polymer brushes on flat substrates interacting with polymer melts. A general strategy for achieving uniform nanoparticle dispersion in polymers is proposed.  相似文献   

13.
First report on the preparation of well-dispersed, indium(III) oxide (In2O3) nanoparticles with 22–35?nm size by polymer thermolysis is presented. Indium–poly(vinyl alcohol) (PVA) coordination polymer films were prepared by ‘solution casting technique’ from the homogeneous aqueous solution of coordination polymer prepared using PVA and indium(III) nitrate as starting materials; subsequently the films were calcined at 550?°C to yield In2O3 nanoparticles. Both indium–PVA coordination polymer that served as the precursor and the titled nanoparticles were characterized by Fourier transform-infrared spectroscopy, photoluminescence (PL), powder X-ray diffraction (XRD), transmission electron microscopy, and thermal analysis. Room temperature PL spectra of the prepared indium oxide nanoparticles showed intense blue emissions around 360, 410 and 430?nm, characteristic of indium oxide nanoparticles due to oxygen vacancies. The lower energy PL emission decreases with an increase of indium(III) content in the precursor. The size of the nanoparticles calculated from line broadening of XRD pattern (cubic; JCPDS: 06-0416) was found to be around 24?nm. The average particle size of the synthesized nanoparticles increased with metal ion content in the precursor coordination polymer.  相似文献   

14.
Fluorescence tunable polymer nanoparticles were prepared by incorporating two hydrophobic fluorescent dyes (9, 10-diphenylanthracene: DPA and nitrobenzoxadiazolyl: NBD) into polymethylmethacrylate (PMMA) nanoparticles via one-step mini-emulsion polymerization method. The prepared fluorescent nanoparticles exhibit the spectral properties of both DPA and NBD dye, indicating that the two fluorophores have been incorporated into the nanoparticles. The nanoparticles greatly enhance the fluorescence emission of the two hydrophobic dyes in aqueous media probably by providing good protection of the dye molecules in the polymer nanoparticles matrix. Moreover, by varying the doping ratio of the two hydrophobic dyes, the polymer nanoparticles exhibit tunable and distinguishable emission characteristics under a single wavelength excitation via occuring fluorescence resonance energy transfer (FRET).  相似文献   

15.
以离子型纤维素醚羧甲基纤维素(CMC)的水溶液为反应介质,制备[Zn4CO3(OH)6]CMC水凝胶,洗涤、干燥后经不同温度煅烧前驱物得到ZnO纳米粒子。通过XRD、SEM、TEM、TG-DSC及FT-IR等测试技术对产物的组成、粒径及形态进行表征,研究了CMC对前驱物及ZnO形态和尺寸的影响。结果表明,由于CMC加入对煅烧前驱物产生的空间位阻作用,所制得纳米ZnO粒子粒度分布均匀、分散性好、不易团聚、粒子的平均粒径<20 nm。利用UV-V is测试了纳米ZnO的光吸收性能,所得的纳米ZnO在200~400 nm具有较强的吸收性。  相似文献   

16.
Summary: A two-phase method has been adapted for the preparation of polymer composites consisting of regioregular poly(3-octylthiophene-2,5-diyl) and Au or Ag nanoparticles. This work compares optical and morphological properties of nanocomposites formed by mixing metal organosols and polymer solution (type I composites) with nanocomposites formed by in-situ reduction in polymer solutions (type II composites). Both types contained very small metal nanoparticles (1–10 nm). Interestingly, more than ten-fold enhancement of Raman scattering of the polymer by the electromagnetic (EM) mechanism of SERS (surface-enhanced Raman scattering) resulted from the coupling of the polymer with plasmonic Au nanoparticles into a nanocomposite system.  相似文献   

17.
Novel molecularly imprinted polymer nanoparticles were synthesized by precipitation polymerization with sunset yellow as the template and [2‐(methacryloyloxy)ethyl] trimethylammonium chloride as the functional monomer. The molecularly imprinted polymer nanoparticles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and their specific surface area and thermal stability were measured. The molecularly imprinted polymer nanoparticles had a high adsorption capacity in wide pH range (pH 1–8) for sunset yellow. The adsorption equilibrium only needed 5 min, and the quantitative desorption was very fast (1 min) by using 10.0 mol/L HCl as the eluant. The maximum adsorption capacity of the molecularly imprinted polymer nanoparticles for sunset yellow was 144.6 mg/g. The adsorption isotherm and kinetic were well consistent with Langmuir adsorption model and pseudo‐second‐order kinetic model, respectively. The relative selectivity coefficients of the molecularly imprinted polymer nanoparticles for tartrazine and carmine were 9.766 and 12.64, respectively. The prepared molecularly imprinted polymer nanoparticles were repeatedly used and regenerated ten times without significant absorption capacity decrease.  相似文献   

18.
Morphology control is important for practical applications of composite materials that consist of functional polymers and nanoparticles. Toward that end, block copolymers provide useful templates to arrange nanoparticles in the scaffold of self-organized polymer microdomains. This paper reports theoretical predictions for the distribution of nanoparticles in the lamellar structures of symmetric diblock copolymers on the basis of a polymer density functional theory (DFT) and the potential distribution theorem (PDT). The DFT predicts periodic spacing of lamellar structures in good agreement with molecular dynamics simulations. With the polymer structure from DFT as the input, the PDT is used to examine the effects of particle size, surface energy, polymer chain length, and compressibility on the distribution of nanoparticles in the limit of low particle density. It is found that the nanoparticle distribution depends not only on the particle size and surface energy but also on the local structure of the microdomain interface, polymer chain length, and compressibility. The theoretical predictions are compared well with experiments and simulations.  相似文献   

19.
A series of poly(ethylene glycol) (PEG)/poly(L-lactic acid) (PLLA) multiblock copolymers were facilely synthesized using triphosgene as coupling agent. With the resulting multiblock copolymers, 10-hydroxycamptothecin (HCPT)-loaded nanoparticles were successfully prepared by dialysis method. The results obtained from dynamic light scattering (DLS) measurements confirmed that HCPT-loaded nanoparticles had the size of less than 200 nm and the average diameter decreased with increasing PLLA content. TEM images demonstrated that most of the drug-loaded nanoparticles had a distinct spherical shape and smooth surface without any aggregation. Atomic force microscopy (AFM) images further indicated that the nanoparticles were in spherical shape with smooth surface, no drug crystal was visualized on their surface. To investigate the drug state in HCPT-loaded nanoparticles, differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) measurements were carried out. The results from these tests suggested that HCPT was molecularly dispersed in the amorphous polymer matrix. Drug loading content and in vitro drug release behavior of HCPT-loaded nanoparticles showed dependence on polymer composition. Cytotoxicity test indicated that HCPT-loaded nanoparticles exhibited greatly superior cytotoxicity compared to free HCPT due to its molecular dispersion in the polymer matrix. Furthermore, the nanoparticles significantly increased the duration of the drug in circulation. All these results demonstrated that PEG/PLLA nanoparticles have great potential as promising delivery system for poorly soluble antitumor drugs.  相似文献   

20.
We present a novel approach to polymerize olefin vapors on the surfaces of metallic and semiconductor nanoparticles. In this approach, a free radical initiator such as AIBN is dissolved in a volatile solvent such as acetone. Selected nanoparticles (prepared separately using the laser vaporization-controlled condensation method) are used to form initiator-coated nanoparticles placed on a glass substrate. The olefin (styrene) vapor is polymerized by the thermally activated initiator on the nanoparticle surfaces. Our approach also provides structural and mechanistic information on the early stages of catalyzed gas-phase polymerization, which can be used to correlate the gas-phase structural properties with the bulk properties and the performance of the polymer nanocomposites. This correlation is the key step in controlling the properties of the polymer nanocomposites. Our results clearly demonstrate the success of this method in preparing polymer coated nanoparticles for a variety of interesting applications. The precise control of the chemical functionality, thickness, and morphology of the polymer film and the size, size distribution, and properties of the core nanoparticles (photoluminescence, magnetic) may lead to major technological breakthroughs in a variety of applications including drug delivery, ultrasensitive detectors, and chemical and biological sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号