首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Styryl dyes are fluorescent, lipophilic cations that have been used as specific labeling probes of mitochondria in living cells. For specific applications such as epifluorescence microscopy or flow cytometry, it is often desirable to synthesize fluorescent derivatives with optimized excitation, emission, and localization properties. Here, we present a chemoinformatic strategy suitable for multiparameter analysis of a combinatorial library of styryl molecules supertargeted to mitochondria. The strategy is based on a simple additive model relating the spectral and subcellular localization characteristics of styryl compounds to the two chemical building blocks that are used to synthesize the molecules. Using a cross-validation approach, the additive model predicts with a high degree of confidence the subcellular localization and spectral properties of the styryl product, from numerical scores that are independently associated with the individual building blocks of the molecule. The fit of the data indicates that more complex, nonadditive interactions between the two building blocks play a minor role in determining the molecule's optical or biological properties. Moreover, the observed additive relationship allows mechanistic inferences to be made regarding the structure-property relationship observed for this particular class of molecules. It points to testable, mechanistic hypotheses about how chemical structure, fluorescence, and localization properties are related.  相似文献   

2.
《中国化学快报》2023,34(3):107626
The normal operation of lysosome, mitochondria, Golgi apparatus and endoplasmic reticulum plays a significant role in maintaining cell homeostasis. Reflecting the state and function of lysosomes, viscosity is a pivotal parameter to assess the stability of microenvironment. Herein, based on TICT mechanism, a new NIR pH-dependent fluorescent probe DCIC with push-pull electronic moiety was synthesized to identify the lysosomes viscosity. In viscous media, DCIC was highly sensitive to viscosity, fluorescence intensity increased by 180 times as viscosity increased from 1.0 cp to 438.4 cp. In addition, DCIC have high localization ability for lysosome, mitochondria, Golgi apparatus, and endoplasmic reticulum and can monitor lysosomal viscosity fluctuations with laser confocal microscopy.  相似文献   

3.
Toxoplasma gondii, the causative agent of toxoplasmosis, is capable of actively penetrating and multiplying in any nucleated cell of warm-blooded animals. Its survival strategies include escape from fusion of the parasitophorous vacuole with host cell lysosomes and rearrangement of host cell organelles in relation to the parasitophorous vacuole. In this article we report the rearrangement of host cell organelles and elements of the cytoskeleton of LLCMK2 cells, a lineage derived from green monkey kidney epithelial cells, in response to infection by T. gondii tachyzoites. Transmission electron microscopy made on flat embedded monolayers cut horizontally to the apical side of the cells or field emission scanning electron microscopy of monolayers scraped with scotch tape before sputtering showed that association of mitochondria to the vacuole is much less frequent than previously described. On the other hand, all parasitophorous vacuoles were surrounded by elements of the endoplasmic reticulum. These data were complemented by observations by laser scanning microscopy using fluorescent probes from mitochondria and endoplasmic reticulum and reinforced by three-dimensional reconstruction from serial sections observed by transmission electron microscopy and labeling of mitochondria and endoplasmic reticulum by fluorescent probes.  相似文献   

4.
Fluorescence imaging based on luminogens with aggregation-induced emission(AIE)effect has drawn great attention in recent two decades,due to their superior advantages to overcome the technical difficulties.Thus,the AIE-active bioprobes with targeted ability at the subcellular level have been widely investigated to visualize the subcellular structures and monitor the biological processes.Considering the very rapid developments and the significance of selective imaging of subcellular structures,we summarize the recent two-year achievements about the AIEgens for targeted imaging of subcellular organelles including nuclei,membranes,lipid droplets(LDs),endoplasmic reticulum(ER),lysosomes,mitochondria and cytoplasm.The designed protocols and advantages of AIEgens,their mechanisms for targeted staining at organelles and the imaging performance are discussed.These AIE bioprobes exhibit great potentials for early diagnosis and therapeutics of diseases that related to subcellular organelles.Finally,the perspectives about AIEgens for these applications are also discussed.  相似文献   

5.
This study was designed to provide more detailed information on the subcellular sites of binding of the porphycene, termed 9-capronyloxytetrakis (methoxyethyl) porphycene (CPO), with a fluorescence resonance energy transfer (FRET) technique. The proximity of CPO to two fluorescent probes was determined: nonyl acridine orange (NAO), a dye with specific affinity for the mitochondrial lipid cardiolipin, and dihexa-oxacarbocyanine iodide (DiOC6), an agent that labels the endoplasmic reticulum (ER). FRET spectra indicated energy transfer between DiOC6 and CPO but no significant transfer between NAO and CPO. These results confirm data obtained by fluorescence microscopy, suggesting a similar pattern of subcellular localization by CPO and DiOC6 but not by CPO and NAO. However, when cells containing CPO were irradiated and then loaded with NAO, FRET between the two fluorophores was observed. Hence, a relocalization of CPO can occur during irradiation. These data provide an explanation for recent studies on CPO-catalyzed photodamage to both ER and mitochondrial Bcl-2.  相似文献   

6.
A protein labeling approach is employed for the localization of a zinc-responsive fluorescent probe in the mitochondria and in the Golgi apparatus of living cells. ZP1, a zinc sensor of the Zinpyr family, was functionalized with a benzylguanine moiety and thus converted into a substrate (ZP1BG) for the human DNA repair enzyme alkylguaninetransferase (AGT or SNAP-Tag). The labeling reaction of purified glutathione S-transferase tagged AGT with ZP1BG and the zinc response of the resulting protein-bound sensor were confirmed in vitro. The new detection system, which combines a protein labeling methodology with a zinc fluorescent sensor, was tested in live HeLa cells expressing AGT in specific locations. The enzyme was genetically fused to site-directing proteins that anchor the probe onto targeted organelles. Localization of the zinc sensors in the Golgi apparatus and in the mitochondria was demonstrated by fluorescence microscopy. The protein-bound fluorescence detection system is zinc-responsive in living cells.  相似文献   

7.
As two important subcellular organelles in eukaryotic cells, the Golgi apparatus (GA) and endoplasmic reticulum (ER) have recently captivated much interest due to their considerable importance in many biofunctions and role as critical biomarkers for various diseases. The development of efficient GA- and ER-specific probes is of great significance, but remains an appealing yet significantly challenging task. Herein, we reported for the first time the construction of an aggregation-induced emission (AIE) platform for GA and ER fluorescent probes, termed as AIE-GA and AIE-ER, by facile synthesis and simple functionalization. Their excellent targeting specificity to GA or ER, remarkable photostability, high brightness, and low working concentration make AIE-GA and AIE-ER significantly impressive and superior to commercially available probes. Moreover, molecular docking calculations are performed to validate the targeting mechanism of the two AIE probes.

As two important subcellular organelles in eukaryotic cells, the Golgi apparatus (GA) and endoplasmic reticulum (ER) have recently captivated much interest due to their considerable importance in many biofunctions and role as critical biomarkers for various diseases.  相似文献   

8.
Bulk studies are not suitable to describe and study cell-to-cell variation, which is of high importance in biological processes such as embryogenesis, tissue differentiation, and disease. Previously, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was used to measure the properties of organelles isolated from millions of cells. As such, these bulk measurements reported average properties for the organelles of cell populations. Similar measurements for organelles released from single cells would be highly relevant to describe the subcellular variations among cells. Toward this goal, here we introduce an approach to analyze the mitochondria released from single mammalian cells. Osteosarcoma 143B cells are labeled with either the fluorescent mitochondrion-specific 10-N-nonyl acridine orange (NAO) or via expression of the fluorescent protein DsRed2. Subsequently, a single cell is introduced into the CE-LIF capillary where the organelles are released by a combined treatment of digitonin and trypsin. After this treatment, an electric field is applied and the released organelles electromigrate toward the LIF detector. From an electropherogram, the number of detected events per cell, their individual electrophoretic mobilities, and their individual fluorescence intensities are calculated. The results obtained from DsRed2 labeling, which is retained in intact mitochondria, and NAO labeling, which labels all mitochondria, are the basis for discussion of the strengths and limitations of this single-cell approach. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users  相似文献   

9.
Beyond-diffraction-limit optical imaging of cells will reveal biological mechanisms, cellular structures, and physiological processes in nanometer scale. Harnessing the photoswitching properties of spiropyran fluorophores, we achieved nanoresolution fluorescence imaging using photoactuated unimolecular logical switching attained reconstruction (PULSAR) microscopy. The PULSAR microscope successfully resolved nanostructures and subcellular organelles when the photoswitchable nanoparticles containing spiropyran dyes were used as fluorescent probes.  相似文献   

10.

Background

Organic solute carrier partner 1 (OSCP1) is known to facilitate the transport of various organic solutes into cells and reported to play a role in cell growth and cell differentiation. Moreover, OSCP1 is known as a tumor suppressor gene that is frequently down-expressed in nasopharyngeal carcinomas and acute myeloid leukemia. However, the underlying mechanisms of action remain unclear and the subcellular localization of OSCP1 has yet to be determined in detail.

Results

Drosophila contains a single orthologue of OSCP1 (dOSCP1) that shares 58% homology with its human counterpart. To study the expression pattern and subcellular localization of dOSCP1, we prepared a specific antibody. Subcellular localization analyses of dOSCP1 with these revealed localization in the plasma membrane, endoplasmic reticulum, Golgi apparatus and mitochondria, but no detection in cytosol. dOSCP1 signals were also detected in the nucleus, although at weaker intensity than in plasma membranes and subcellular organelles. In addition, native polyacrylamide gel electrophoresis analysis with and without β-mercaptoethanol treatment revealed that recombinant dOSCP1 forms dimers and trimers in solution. The dimer form of dOSCP1 could also be detected by Western immunoblot analyses in third instar larval extracts.

Conclusions

The data revealed that dOSCP1 localizes not only in the plasma membrane but also in the nucleus, ER, Golgi apparatus and mitochondria. It is therefore conceivable that this protein may interact with various partners or form multimeric complexes with other proteins to play multiple roles in cells, providing clues to understanding the functions of dOSCP1 during Drosophila development.
  相似文献   

11.
Fourier transform multipixel spectroscopy was applied to subcellular localization of endogenous protoporphyrin (endo-PP) in single living B16 melanoma cells during photosensitization. Continuous fluorescence spectra for each pixel were recorded using a Sagnac interferometer coupled to a charge-coupled device camera. Multiple frames of data were acquired for each pixel composing the image, then they were stored as interferometric data and resolved as spectra for every pixel (103-4 × 103 point pixels in a single cell). The net result was the intensity I (x, y, λ), for each pixel of the image (x, y), at any wavelength (λ). The present study demonstrates the application of Fourier transformed multipixel spectroscopy for spectral imaging of melanoma cells incubated with 5-aminolevulinic acid (ALA). The fluorescence image of ALA-treated cells revealed endo-PP all over the cytosol with a vesicular distribution, which represent mitochondria and endoplasmic reticulum compartments. Two main spectral fluorescence peaks were demonstrated at 630 and 670 nm, of monomeric and aggregated protoporphyrin, with intensities that differed from one sub-cellular site to another. Photoirradiation of the cells induced point-specific subcellular fluorescence spectrum changes and demonstrated photoproduct formation. Spectral-image reconstruction revealed the subcellular distribution of porphyrin species in single photosensitized cells. Multipixel spectroscopy of exogenous protoporphyrin revealed an endosomal-lysosomal compartment in aggregated states, whereas monomeric porphyrin species were localized mainly on the outer membrane. Photo-products could be visualized at sites of formation in suhcellular compartments.  相似文献   

12.
9-Acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn) is a promising new photosensitizer characterized by high absorption around 640 nm and high singlet oxygen yield. To study the mechanism of action in vitro we have investigated uptake, intracellular localization, cell survival and ultrastructural changes following photodynamic treatment in human cell lines derived from the skin (SCL1 and SCL2, squamous cell carcinoma; HaCaT keratinocytes; N1 fibroblasts). Using flow cytometry we have determined the cellular fluorescence as a marker for the uptake of ATMPn after incubation for 60 min. Co-staining with ATMPn and fluorescent dyes specific for cell organelles reveals an intracellular localization of ATMPn in lysosomes. Following irradiation using an incoherent light source (580-740 nm) and a light fluence of 24 J cm-2, phototoxicity is determined by means of the 3-4.5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay. For all cell lines ATMPn concentrations above 15 nM yield a significant phototoxic effect. The 50% effective concentration, EC50, for SCL1 cells is 11.2 +/- 2.9 nM ATMPn. ATMPn uptake and phototoxicity are more effective for HaCaT and SCL1 as compared to SCL2 and N1 cells. Growth curves confirmed the results of the MTT assay. Because of the high lysosomal accumulation of ATMPn, already low photosensitizer concentrations without dark toxicity yield a high photodynamic effect. Immunofluorescence and electron microscopy reveal damage to tonofilaments, plasma membrane and mitochondria, indicating a mechanism unrelated to apoptosis. A dose yielding complete cell killing, as needed for oncological indications, might lead to necrosis, whereas lower sub-lethal doses result in induction of apoptosis.  相似文献   

13.
Photodynamic therapy (PDT) is a novel cancer therapy that uses light-activated drugs (photosensitizers) to destroy tumor tissue. Reactive oxygen species produced during PDT are thought to cause the destruction of tumor tissue. However, the precise mechanism of PDT is not completely understood. To provide insight into the in vitro mechanisms of PDT, we studied the subcellular localization of the photosensitizer HOSiPcOSi(CH3)2-(CH2)3N(CH3)2 (Pc 4) in mouse lymphoma (LY-R) cells using double-label confocal fluorescence microscopy. This technique allowed us to observe the relative distributions of Pc 4 and an organelle-specific dye within the same cell via two, spectrally distinct, fluorescence images. To quantify the localization of Pc 4 within different organelles, linear correlation coefficients from the fluorescence data of Pc 4 and the organelle-specific dyes were calculated. Using this measurement, the subcellular spatial distributions of Pc 4 could be successfully monitored over an 18 h period. At early times (0-1 h) after introduction of Pc 4 to LY-R cells, the dye was found in the mitochondria, lysosomes and Golgi apparatus, as well as other cytoplasmic membranes, but not in the plasma membrane or the nucleus. Over the next 2 h, there was some loss of Pc 4 from the lysosomes as shown by the correlation coefficients. After an additional incubation period of 2 h Pc 4 slowly increased its accumulation in the lysosomes. The highest correlation coefficient (0.65) was for Pc 4 and BODIPY-FL C5 ceramide, which targets the Golgi apparatus, and also binds to other cytoplasmic membranes. The correlation coefficient was also high (0.60) for Pc 4 and a mitochondria-targeting dye (Mitotracker Green FM). Both of these correlation coefficients were higher than that for Pc 4 with the lysosome-targeting dye (Lysotracker Green DND-26). The results suggest that Pc 4 binds preferentially and strongly to mitochondria and Golgi complexes.  相似文献   

14.
Rat pituitary homogenates were subjected to two phase countercurrent partition in a poly(ethylene glycol)-dextran mixture using a simple apparatus with enhanced gravity to facilitate the phase separations. Assay of the fractions for organelle marker enzymes and prolactin after 17 transfers showed similar distributions for endoplasmic reticulum, lysosomes, prolactin granules and plasma membrane at the lowest dextran concentrations. Increasing the dextran concentrations had a differential effect on the various organelles. Excellent resolution of endoplasmic reticulum from the other organelles was obtained and marked organelle heterogeneity was demonstrated. Two-phase countercurrent partition thus offers an alternative approach to the subcellular fractionation of pituitary homogenates and should prove useful in separating endoplasmic reticulum from plasma membrane and other cell components.  相似文献   

15.
Recently, a nongenomic cytotoxic component of the chemotherapeutic agent tamoxifen (TAM) has been identified that predominantly triggers mitochondrial events. The present study delineates the intracellular fate of TAM and studies its interaction with a spectrum of cell homeostasis modulators primarily relevant to mitochondria. The subcellular localization of TAM was assessed by confocal fluorescence microscopy. The effect of the modulators on TAM cytotoxicity was assessed by standard MTT assays. Our findings show that in estrogen receptor positive MCF7 breast adenocarcinoma cells and DU145 human prostate cancer cells, TAM largely accumulates in the mitochondria and endoplasmic reticulum, but not lysosomes. Our results further demonstrate that in MCF7, but not in DU145 cells, mitochondrial electron transport chain complex I and III inhibitors exacerbate TAM toxicity with an order of potency of myxothiazol ≥ stigmatellin > rotenone > antimycin A, suggesting a cell-specific cytotoxic interplay between mitochondrial complex I and III function and TAM action.  相似文献   

16.
There is increasing interest in the usefulness of block copolymer micelles as drug delivery vehicles. However, their subcellular distribution has not been explored extensively, mostly because of the lack of adequately labeled block copolymers. In a previous study, we showed that fluorescently labeled block copolymer micelles entered living cells and co-localized with cytoplasmic organelles selectively labeled with fluorescent dyes. The details of the observed co-localizations were, however, limited by the resolution of the fluorescence approach, which is ca. 500 nm. Using transmission electron microscopy (TEM), we established time- and concentration-dependent subcellular distributions of gold-labeled micelles within human embryonic kidney (HEK 293) cells and human lung carcinoma (A549) cells. Gold particles were incorporated into poly(4-vinylpyridine)-block-poly(ethylene oxide) (P4VP21-b-PEO45) micelles. Data from dynamic light scattering (DLS) and TEM analyses revealed that the sizes of the gold particles ranged from 4 to 8 nm. The cells survived up to 24 h in the presence of low gold-labeled micelle concentrations (0.73 microg/mL), but cell death occurred at higher concentrations (i.e., kidney cells are more susceptible than lung cells). Over 24 h periods of equivalent exposure, lung cells internalized significantly more gold-incorporated micelles than kidney cells. Although micelles were added to the cell culture media as dispersed colloidal particles, the presence of serum in these media caused aggregation. These aggregates occurred mainly close to the cell plasma membrane at early times (5-10 min); however, at later times (24 h) aggregated particles were seen inside endosomes and lysozomes. Thus, gold-incorporated (labeled) micelles can serve as a valuable extension of the fluorescence approach to visualizing the localization of micelles in subcellular compartments, improving the resolution by at least 20-fold.  相似文献   

17.
Fluorescent dyes have become increasingly important in cell biology since they enable high signal-to-noise and selectivity in visualizing subcellular organelles. Photoactivatable dyes allow for tracking and monitoring of a subset of cells or organelles. Here, we report the synthesis and application of a new class of large Stokes shift fluorescent dyes that are water-soluble, cell permeable, non-cytotoxic, and lysosome-specific. Additionally, we demonstrate temporally controlled sequential photoactivation of individual cells in close spatial proximity.  相似文献   

18.
The search for new efficient sensitizers for photodynamic therapy (PDT) points to improve photophysical properties like absorption in the red region and singlet oxygen quantum yield as well as to control the localization of the sensitizer within the tumour cell. Depending on their physicochemical properties and their uptake mechanism, sensitizers can reach different intracellular concentrations and localize in different subcellular compartments. Moreover, the preferential localization of a sensitizer in target organelles, like mitochondria or lysosomes, could determine the cell death mechanism after PDT. This study aimed to investigate the influence of substitutions on dihydroxychlorins with regard to intracellular uptake, subcellular localization and cell death pathway. Moreover, the effect of a liposome-based delivery system was tested. The intracellular uptake was found to be strictly dependent on the sensitizer molecular structure and the means of its delivery. The most polar sensitizer in this study (compound 3) had, depending on incubation time, an intracellular concentration 2-8 times higher than the unsubstituted chlorin 1. All investigated photosensitizers localize predominantly in lysosomes but after longer incubation times weak fluorescence intensity was also detected in mitochondria and Golgi apparatus. The cell death pathway was found to be influenced by the sensitizer intracellular concentration and the applied light doses. In general, the increasing amphiphilicity of the sensitizer molecules is correlated with an increased sensitizer uptake and an increased rate of necrotic cells after irradiation.  相似文献   

19.
《化学:亚洲杂志》2017,12(18):2501-2509
A versatile fluorescent probe, PITE, based on alkyl‐substituted pyridoindole (PI) and tetraphenylethylene (TE), which exhibits facile pH‐induced fluorescence switching in solution, as nanoparticles, and in the solid state, is presented. Strong fluorescence in the solid state, as well as in solution and the aggregated state, allow sensing of toxic acid vapors. Fluorescence “off–on” switching of PITE through exposure to trifluoroacetic acid and triethylamine vapor is visualized by the naked eye. A unified picture of the switchable fluorescence of PITE is obtained by comprehensive spectroscopic investigations coupled with quantum mechanical calculations. Strong fluorescence, a large Stokes shift, high photostability, and biocompatibility of PITE make it a viable probe for subcellular imaging. Extensive fluorescence microscopic studies by employing organisms including lower and higher eukaryotes reveal specific localization of PITE to lipid droplets (LDs). LDs are dynamic subcellular organelles linked to various physiological processes and human diseases. Hence, the specific detection of LDs in diverse organisms is important to biomedical research and healthcare. Isolation of LDs and subsequent colocalization studies ascertain selective targeting of LDs by the easily affordable, lipophilic bioprobe, PITE. Thus, PITE is a promising multifunctional probe for chemosensing and the selective tracking of LDs.  相似文献   

20.
Abstract— Low temperature spectroscopy has been used to characterize microsomal fractions obtained from cauliflower inflorescences ( Brasska oleracea L.) by differential centrifugation and partition in an aqueous polymer two-phase system. The plasma membrane-enriched fraction (U3) was found to contain one dominant b -cytochrome, which could be reduced both by blue light and by dithionite. An action spectrum of the blue light-induced absorbance change [LIAC, Δ(A430—A410)] associated with the reversible reduction of this b -type cytochrome indicated that the primary light-receptor was a flavin-like compound. Another microsomal fraction (L3) containing membranes from mitochondria, endoplasmic reticulum and other organelles also contained light-reducible cytochrome. One of these could be identified as cytochrome c oxidase, and another may be identical to cytochrome b 5 of the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号