首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, we investigate nonlinear second order differential equations subject to linear impulse conditions and periodic boundary conditions. Sign properties of an associated Green’s function are exploited to get existence results for positive solutions of the nonlinear boundary value problem with impulse. Upper and lower bounds for positive solutions are also given. The results obtained yield periodic positive solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.  相似文献   

3.
This paper is concerned with a procedure for estimating the global discretization error arising when a boundary value problem for a system of second order differential equations is solved by the simple shooting method, without transforming the original problem in an equivalent first order problem. Expressions of the global discretization error are derived for both linear and nonlinear boundary value problems, which reduce the error estimation for a boundary value problem to that for an initial value problem of same dimension. The procedure extends to second order equations a technique for global error estimation given elsewhere for first order equations. As a practical result the accuracy of the estimates for a second order problem is increased compared with the estimates for the equivalent first order problem.  相似文献   

4.
在多连通区域上研究带有可测系数的二阶非线性抛物型方程组的初-混合边值问题,首先我们将其化为复形式的方程组,并给出在一定条件下的上述初-这值问题解的先验估计,然后利用解的估计和列紧性原理,证明了这种初-边值问题解的存在性。在论证过程中,我们始终用复分析方法讨论文中所提出的问题,没有看到国外有人使用这种方法处理此类问题。  相似文献   

5.
This paper is devoted to the existence of solutions for a problem of first order difference equations with maxima and with nonlinear functional boundary value conditions. Such boundary conditions include, among others, initial, periodic, antiperiodic and multipoint boundary value conditions, as particular cases.  相似文献   

6.
An initial boundary value problem for a quasilinear equation of pseudoparabolic type with a nonlinear boundary condition of the Neumann–Dirichlet type is investigated in this work. From a physical point of view, the initial boundary value problem considered here is a mathematical model of quasistationary processes in semiconductors and magnets, which takes into account a wide variety of physical factors. Many approximate methods are suitable for finding eigenvalues and eigenfunctions in problems where the boundary conditions are linear with respect to the desired function and its derivatives. Among these methods, the Galerkin method leads to the simplest calculations. On the basis of a priori estimates, we prove a local existence theorem and uniqueness for a weak generalized solution of the initial boundary value problem for the quasilinear pseudoparabolic equation. A special place in the theory of nonlinear equations is occupied by the study of unbounded solutions, or, as they are called in another way, blow-up regimes. Nonlinear evolutionary problems admitting unbounded solutions are globally unsolvable. In the article, sufficient conditions for the blow-up of a solution in a finite time in a limited area with a nonlinear Neumann–Dirichlet boundary condition are obtained.  相似文献   

7.
In this paper, we develop and validate a numerical procedure for solving a class of initial boundary value problems for the improved Boussinesq equation. The finite element method with linear B-spline basis functions is used to discretize the nonlinear partial differential equation in space and derive a second order system involving only ordinary derivatives. It is shown that the coefficient matrix for the second order term in this system is invertible. Consequently, for the first time, the initial boundary value problem can be reduced to an explicit initial value problem to which many accurate numerical methods are readily applicable. Various examples are presented to validate this technique and demonstrate its capacity to simulate wave splitting, wave interaction and blow-up behavior.  相似文献   

8.
The present paper deals with the exposition of methods for solving the Brockett problem on the stabilization of linear control systems by a nonstationary feedback. The paper consists of two parts. We consider continuous linear control systems in the first part and discrete systems in the second part. In the first part, we consider two approaches to the solution of the Brockett problem. The first approach permits one to obtain low-frequency stabilization, and the second part deals with high-frequency stabilization. Both approaches permit one to derive necessary and sufficient stabilization conditions for two-dimensional (and three-dimensional, for the first approach) linear systems with scalar inputs and outputs. In the second part, we consider an analog of the Brockett problem for discrete linear control systems. Sufficient conditions for low-frequency stabilization of linear discrete systems are obtained with the use of a piecewise constant periodic feedback with sufficiently large period. We obtain necessary and sufficient conditions for the stabilization of two-dimensional discrete systems. In the second part, we also consider the control problem for the spectrum (the pole assignment problem) of the monodromy matrix for discrete systems with a periodic feedback.  相似文献   

9.
In this paper, we consider the boundary value problem with the shift for nonlinear uniformly elliptic equations of second order in a multiply connected domain. For this sake, we propose a modified boundary value problem for nonlinear elliptic systems of first order equations, and give a priori estimates of solutions for the modified boundary value problem. Afterwards we prove by using the Schauder fixedpoint theorem that this boundary value problem with some conditions has a solution. The result obtained is the generlization of the corresponding theorem on the Poincare boundary value problem.  相似文献   

10.
A rigorous mathematical analysis is given for a magnetohydrodynamics boundary layer problem, which arises in the two-dimensional steady laminar boundary layer flow for an incompressible electrically conducting power-law fluid along a stretching flat sheet in the presence of an exterior magnetic field orthogonal to the flow. In the self-similar case, the problem is transformed into a third-order nonlinear ordinary differential equation with certain boundary conditions, which is proved to be equivalent to a singular initial value problem for an integro-differential equation of first order. With the aid of the singular initial value problem, the uniqueness and existence results for (generalized) normal solutions are established and some properties of these solutions are explored.  相似文献   

11.
In this paper we study two boundary value problems for second order strongly nonlinear differential inclusions involving a maximal monotone term. The first is a vector problem with Dirichlet boundary conditions and a nonlinear differential operator of the form xa(x, x′)′. In this problem the maximal monotone term is required to be defined everywhere in the state space ℝN. The second problem is a scalar problem with periodic boundary conditions and a differential operator of the form x ↦ (a(x)x′)′. In this case the maximal monotone term need not be defined everywhere, incorporating into our framework differential variational inequalities. Using techniques from multivalued analysis and from nonlinear analysis, we prove the existence of solutions for both problems under convexity and nonconvexity conditions on the multivalued right-hand side.  相似文献   

12.
In this paper, existence of nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions is considered by using the monotone operator principle, Mountain pass lemma, Linking theorem and some results in Morse theory. The obtained results are also valid and new for the corresponding difference periodic boundary value problem.  相似文献   

13.
The periodic boundary value problem for systems of secondorder ordinary nonlinear differential equations is considered. Sufficient conditions for the existence and uniqueness of a solution are established.  相似文献   

14.
In this paper a novel approach is presented for an analytic approximate solution of nonlinear differential equations with boundary conditions. By converting the nonlinear problem into an initial value form, a shooting-like procedure is introduced based on the powerful homotopy analysis technique. The proposed methodology is shown to work adequately for solving single or multiple solutions of some sample nonlinear boundary value problems.  相似文献   

15.
We study the asymptotic behavior of solutions of the initial- boundary value problem, with periodic boundary conditions, for a fourth-order nonlinear degenerate diffusion equation with a logarithmic nonlinearity. For strictly positive and suitably small initial data we show that a positive solution exponentially approaches its mean as time tends to infinity. These results are derived by analyzing the equation verified by the logarithm of the solution.

  相似文献   


16.
This paper concerns linear and nonlinear nth order boundary value problems that contain a finite number of random variables in the boundary conditions or in the differential equation. The results extend methods previously known for corresponding initial value problems. Numerically implementable procedures are given for the determination of the joint density of the solution at an arbitrary point. The possible use of Liouvilleapos;s equation to reduce a random boundary value problem to a random initial value problem is also indicated.  相似文献   

17.
The existence and multiplicity of positive solutions are established to periodic boundary value problems for singular nonlinear second order ordinary differential equations. The arguments are based only upon the positivity of the Green's functions and the Krasnosel'skii fixed point theorem. As an example, a periodic boundary value problem is also considered which comes from the theory of nonlinear elasticity.  相似文献   

18.
The major target of this paper is to construct new nonlinear boundary–initial value problems for Boussinesq–Burgers Equations, and derive the solutions of these nonlinear boundary–initial value problems by the simplified homogeneous balance method. The nonlinear transformation and its inversion between the Boussinesq–Burgers Equations and the linear heat conduction equation are firstly derived; then a new nonlinear boundary–initial value problem for the Boussinesq–Burgers equations with variable damping on the half infinite straight line is put forward for the first time, and the solution of this nonlinear boundary–initial value problem is obtained, especially, the decay mode solution of nonlinear boundary–initial value problem for the cylindrical (spherical) Boussinesq–Burgers equations is obtained.  相似文献   

19.
20.
In this paper we consider two quasilinear boundary value problems. The first is vector valued and has periodic boundary conditions. The second is scalar valued with nonlinear boundary conditions determined by multivalued maximal monotone maps. Using the theory of maximal monotone operators for reflexive Banach spaces and the Leray-Schauder principle we establish the existence of solutions for both problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号