首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pulsed power operation mode of a radiofrequency (rf) glow discharge time‐of‐flight mass spectrometer was investigated, for several ions, in terms of intensity profiles along each pulse period. Particular attention was paid to the plateau and transient afterglow regions. An rf pulse period of 4 ms and a duty cycle of 50% was selected to evaluate the influence of discharge parameters in the afterglow delay and shape of Ar+, Ar2+ and several analytes (Br, Cl, Cu) contained in polymeric layers. Pulse shapes of Ar+ and Ar2+ ions vary with pressure and power. At low pressures the highest intensity is observed in the plateau while at higher pressures (>600 Pa) the afterpeak is the dominant region. Although the influence of the applied power is less noticeable, a widening of the afterglow time regime occurs for Ar+ when increasing the power. Maximum intensity of the argon signal is measured in the afterglow at 30 W, while the area of such afterpeak increases with power. The maximum intensity of Ar2+ is obtained at the highest power employed (60 W) and the ratio maximum intensity/afterglow area remains approximately constant with power. Analytes with ionization potentials below (Cu) or just above (Br) the argon metastable energy show maxima intensities after argon ions decay, indicating they could be ionized by collisions with metastable Ar atoms. Chlorine signals are observed in the afterglow despite their ionization potential is well above the energy of argon metastable levels. Moreover, they follow a similar pattern to that observed for Ar2+, indicating that charge‐transfer process with Ar2+ could play a significant role. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The formation of Ar 2 + ions has been investigated by means of the threshold photoelectron photoion coincidence (TPEPICO) technique. Two pathways for the formation of Ar 2 + ions are important. One is a direct path via excitation of Rydberg states of Ar2 with consecutive autoionization. The other path is dissociative ionization of larger argon clusters, in this case argon trimers. These two pathways lead to Ar 2 + ions with different internal energy. The pathways are easily distinguished in the TPEPICO-TOF spectra by the kinetic energy released (KER) in the dissociative ionization. The KER for the reaction Ar 3 + → Ar 2 + + Ar was measured as a function of the photon energy and compared to the KER expected from statistical theory. The agreement is satisfying and confirms that Ar 3 + ions do indeed dissociate at the thermochemical threshold. At higher photon energy the excited2Π(3/2)g state of Ar 3 + is also detected from a second component in the KER. By applying a kinetic energy discrimination it is possible to measure cluster ion spectra in the presence of larger clusters but essentially without interference from the latter.  相似文献   

3.
The effect of argon/helium pressure ratios on the emission intensity of various Ar II lines is investigated for a Grimm-type glow discharge radiation source, operated with Ar-He mixtures. The relative intensities of the Ar II lines are altered significantly by mixing helium with argon. It is found that the population of the Ar+ excited states can be redistributed through He-Ar collisional energy transfer. The energy level of the He singlet metastable state (1S0,20.62 eV) is very important for these processes. If the excitation energy of Ar II lines is higher than that of the He singlet metastable, strong quenching of the Ar II line intensity is observed. However, when the excitation energy is slightly lower, some of the Ar II lines are enhanced by adding helium to the argon plasma. Energy exchanges between the Ar+ doublet term states and the He singlet metastable are favoured because the total spin remains unchanged before and after the He-Ar collisions. Furthermore, the helium mixing also exerts a great influence on the emission intensities of the elements sputtered from the cathode of the discharge lamp. The enhancement of Al I and Al II emission intensities at suitable Ar-He mixture ratios is discussed for when aluminum is employed as a cathode material.  相似文献   

4.
Photoionisation experiments were performed with heterogeneous Ar-Xe-clusters produced by supersonic expansion of argon gas with small quantities of xenon added to it. A threshold-electron photoionisation (TEPICO) technique was used to obtain time of flight cluster mass spectra. These mass spectra show particularly strong intensities for Ar12Xe+ and Ar18Xe+ which are attributed to the extraordinary stabilities of these cluster ions. Maxima in the ionic size distribution around Ar7Xe+ are related to a particular abundance ofneutral Ar12Xe which is fragmented after ionization. These stabilities are explained in terms of geometries consisting of a central Xe atom or ion surrounded by shells of Ar atoms. Filled shells exhibit particular strong bonding because these exhibit the largest number of atom-atom bonds. This conclusion is supported by simple theoretical calculations. The ionization process is discussed in terms of two direct and one indirect ionization channels the latter one proceeding via an intermediate electronic excitation of the Ar component in the neutral cluster.  相似文献   

5.
Picosecond multiphoton ionization of (NO)mArn clusters produced in a supersonic expansion of NO/Ar gas mixtures has been studied using time-of-flight mass spectrometry. Two-photon ionization with 266 nm photons show that dilute gas mixtures (1% NO/Ar) yield clusters limited to m≤7, but with as many as 37 argon atoms. Magic numbers are observed for NO+Ar12, NO+Ar18, (NO) 2 + Ar17, NO+Ar22, and (NO) 2 + Ar21 and are understood in terms of solvation of the NO+ and (NO) 2 + by argon in icosahedral arrangements. Four-photon ionization with 532 nm light produces dissociation of the clusters to yield only NO+Arn with n up to 54. This distribution exhibits an additional magic number at n=54, consistent with the completion of a second solvation sphere about the NO+. The known wavelength dependence for photodissociation of (NO) 2 + and (NO) 3 + and comparison of MPI spectra obtained with 266, 355, and 532 nm light indicate that the dissociation is occurring in the cluster ions.  相似文献   

6.
A general method for identifying the origin of a particular polyatomic ion is described. Based on a postulated dissociation reaction, measured ion signal ratios (e.g. Ar2+/Ar+) are combined with mass bias corrections and estimates of the density of the neutral product (usually Ar, O or H atoms) to determine a gas kinetic temperature Tgas. The temperature can also be measured by the reduction in pressure when the ICP is sampled (compared to room temperature argon), or by other means. Dissociation energies and spectroscopic constants for the ions are necessary. For the particular instrument used, some of the findings of this study are: (a) ArO+ and ArN+ can be either dissociated (if the plasma potential is high) or created (if the plasma potential is low) by collisions between the sampler and skimmer; (b) the strongly-bound oxide ions O2+ and MO+ for the rare earths are observed at levels consistent with Tgas ∼5300 K in a ‘hot’ plasma, but ClO+ is formed in excess; and (c) the abundances of most other polyatomic ions like H2O+ and ArH+ correspond to higher densities than would be expected in the ICP itself.  相似文献   

7.
In the mass spectrum of an argon inductively coupled plasma (ICP), there is a peak due to the presence of the argon dimer ion, Ar2+. Using elementary statistical mechanics, an attempt is made to elucidate the mechanism responsible for this ion's presence in the ICP, The assumption of local thermodynamic equilibrium (LTE) in the ICP leads to three possible mechanisms that could be responsible for the presence of the argon dimer ion, however, the results of the calculations show that only one of the mechanisms agrees with experiment. The experimental measurements of the number density ratio of Ar2+ to Ar+, against which the theoretical values are compared, were taken using inductively coupled plasma mass spectrometry (ICP-MS),  相似文献   

8.
A technique is described, that allows the measurement of integral cross sections for ion-molecule reactions and electron-transfer processes in the energy range from typically 0.1 to 20 eV (lab). Basically similar to the tandem mass spectrometer method, it uses inhomogeneous oscillatory electric fields for the storage and guidance of the primary ions and for the collection of the secondary ions. By these means a reduction of the number of excited ions in the primary beam and a good definition of the kinetic energy are obtained, together with a collection and detection probability for the secondary ions, that approaches unity for all scattering angles in a broad energy band. Tire ion beam intensity (105 to 107 ions per second) is only weakly dependent on the kinetic energy down to typically 0.15 eV (lab). The distribution of the collision energies is mainly determined by the thermal motion of the reactant gas in the scattering chamber (T ≈ 300 K). Measurements are reported for the reactions Ar+ + D2 → ArD+ + D and Ne+ + CO → C+ Ne+O.  相似文献   

9.
Mass spectra of Nb+ and Rh+ complexes with argon ligands exhibit `magic' peaks Nb+Ar4 and Rh+Ar6, similar to observations for V+Ar4 and Co+Ar6, indicating coordinative saturation. A consistent explanation is obtained by assuming that the rare gas ligands seek out electron density minima in the valence shell of the ion, which permit a closer approach to the metal core and a stronger charge-induced dipole bond. Ab initio density functional calculations, which predict stable square planar complexes for the d4 ions and octahedral for the d8 species, support this interpretation and show that rare gas complexes of d4 metal ions fit perfectly well into the coordination chemical framework based on the Jahn–Teller effect.  相似文献   

10.
A computer model is developed for describing argon/nitrogen glow discharges. The species taken into account in the model include electrons, Ar atoms in the ground state and in the 4s metastable levels, N2 molecules in the ground state and in six different electronically excited levels, N atoms, Ar+ ions, N+, N2+, N3+ and N4+ ions. The fast electrons are simulated with a Monte Carlo model, whereas all other species are treated in a fluid model. 74 different chemical reactions are considered in the model. The calculation results include the densities of all the different plasma species, as well as information on their production and loss processes. The effect of different N2 additions, in the range between 0.1 and 10%, is investigated.  相似文献   

11.
To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP–MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP–MS (“Platform ICP”, Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2 + was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 μg L–1 solution nebulized by means of a USN and for 78Se/80Se in 100 μg L–1 solution nebulized by means of a Meinhard nebulizer. Received: 15 December 2000 / Revised: 26 March 2001 / Accepted: 27 March 2001  相似文献   

12.
The kinetic energy-dependent Ar++ N2 ion-molecule reaction has been used as a chemical “thermometer” to determine the kinetic energy of ions produced by electron ionization and trapped by using a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The rate constant for this reaction obtained on the FTICR mass spectrometer was compared to previous work, which allowed a kinetic energy estimate to be made. In addition, the effects of varying parameters such as trapping voltage and pressure on ion kinetic energy were investigated. No evidence of the differing reactivity of higher energy electronic states of Ar+, such as 2P1/2, was observed and the results of a model of this system are presented that support this observation. Pressure studies revealed that with an average of as few as 13 ion-molecule collisions, Ar+ ions are collisionally relaxed to an extent unaffected by additional collisions. Based on recent variable temperature selected ion flow drift tube measurements, FTICR ion energies are estimated to be slightly above thermal.  相似文献   

13.
The water content of the carrier flow originating from an electrothermal vaporization unit (ETV) attached to an inductively coupled plasma mass spectrometer was monitored by following the argon hydride ion (ArH+) at m/z=37. The goal was to measure the water expelled by the ETV at sample vaporization and evaluate the influence of this parameter on the ion-generation efficiency. Linear responses from the argon hydride were obtained when the water loading in the plasma injector flow was increased from 0 to 3.3 mg/min. Other argides and water-derived species (Ar+, Ar+2 and O+2) were also monitored simultaneously and the effects from operating parameters have been calculated for each species. The magnitude of these effects can eventually be used as diagnosis tools. It was also found that signals for zinc, copper, lead, antimony and arsenic were greatly influenced by slight variations in water loading at low water levels. These signal fluctuations are greatly attenuated and transients' shapes restored by convoluting each element transient with the ArH+ or Ar+2 curves that were recorded simultaneously. Envisioned applications that would benefit from a water-enhanced signal include spray electrothermal vaporization, direct sample insertion and laser ablation for inductively coupled plasma–mass spectrometry. The argon dimer Ar+2 seems more appropriate for making the correction since it provides a direct insight on the plasma temperature and provides a robust signal.  相似文献   

14.
The reaction of Ar+ with H2O has been investigated at near-thermal energy. The product ions H2O+ and ArH+ account for 90 and 10% of the total reaction rate, respectively. Kinetic energy measurements and emission spectroscopy of the H2O+ product ions are reported. It is concluded that at least 60% of H2O+ ions are in the X? state with ≈2.4 eV vibrational energy while up to 40% are in the à state with a mean vibrational energy of 1.4 eV; the à state vibrational distribution has been determined. It is shown that both H2O+ states are populated via an energetically “non-resonant” charge transfer process.  相似文献   

15.
The composition and chemical state of iron and boron in the surface layer of iron boride under different kinds of pretreatment of samples have been investigated by the method of X-ray photo-electron spectroscopy. It has been found that in the initial sample there is oxygen chemically combined with iron and boron atoms. Upon heating (450°C) in hydrogen, in argon, and in vacuo there occurs removal of oxygen only from iron atoms (no pure iron was found to be formed). Boron oxidizes and there probably appears a new surface combination of boron with oxygen in which the bonding energy of 1s electrons is higher than that in B2O3. Treatment of the iron boride surface with argon ions and with protons ensures uniform removal of oxygen from iron and boron atoms. It has been found that thermal treatment of iron boride leads to depletion of iron atoms from the sample surface layer, and pickling with argon ions and with protons leads to strong enrichment. Iron boride samples subjected to Ar+ and H+ bombardment tend to undergo significant oxidation when subsequently exposed to air at room temperature.  相似文献   

16.
A hybrid model is developed for describing the effects of oxygen addition to argon glow discharges. The species taken into account in the model include Ar atoms in the ground state and the metastable level, O2 gas molecules in the ground state and two metastable levels, O atoms in the ground state and one metastable level, O3 molecules, Ar+, O+, O2+ and O? ions, as well as the electrons. The hybrid model consists of a Monte Carlo model for electrons and fluid models for the other plasma species. In total, 87 different reactions between the various plasma species are taken into account. Calculation results include the species densities and the importance of their production and loss processes, as well as the dissociation degree of oxygen. The effect of different O2 additions on these calculation results, as well as on the sputtering rates, is discussed.  相似文献   

17.
In this work, a fluid model has been applied to study HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. Based on time average reaction rates, the model identify the most dominant species in HBr/Ar plasma. Our simulation results show that the neutral species like H and Br, which are the key precursors in chemical etching, have bell shape distribution while ions like HBr+, Br+ and Ar+ which plays a dominant role in the physical etching, have double humped distribution and shows peaks near electrodes. The effect of HBr/Ar mixing ratios on densities of dominant species are analyzed. The addition of Ar to HBr plasma decreases H, Br and HBr+ densities slightly while increases Br+ and Ar+ densities. It was found that the dilution of HBr by Ar results in an increase in electron density and electron temperature, which results in more ionization and dissociation. The densities and hence the fluxes of the neutrals and positive ions for etching and subsequently chemical etching versus physical etching in HBr/Ar plasmas discharge can be controlled by tuning Ar concentration in the discharge and the desire etching can be achieved.  相似文献   

18.
A minimum-basis diatomics-in-molecules (DIM) model previously developed for singly-ionized argon clusters is applied to neon clusters, Ne n + , forn=3, 4,...,22. A search for the global minimum energy of each cluster yields structures with the positive charge localised on a dimer-ion. This appears to be due largely to the linear unsymmetrical configuration which the model finds for Ne 3 + . For this reason, the structures of the clusters at their minimum energy are different from those for Ar n + computed with the same model. On the other hand, the behaviour of the charge distribution as a function of the geometrical configuration is similar to that for Ar n + , as are the overall shapes of the potential energy surfaces. The results are discussed in terms of the charge distributions and the ratios of equilibrium properties of the dimers and dimer-ions which constitute the input to the model.  相似文献   

19.
An instrument for a sputtered neutral mass spectrometry with a quadrupole mass spectrometer (QMS) by resonance‐enhanced multiphton ionization method is developed to study sputtered neutrals emission phenomena under ion irradiation in a low‐energy region. We have prepared a pulsed primary ion beam and an ion counting system, and have optimized the operation parameter including a sample bias, energy analyzer voltages, pulsed timing of laser and ion beam, etc. A yield ratio of the lowest‐lying excited state a5S2 to the ground state a7S3 for sputtered Cr atoms has been measured as a function of incident energy of Ar+ and O2+ down to 600 eV using a polycrystalline Cr sample. The yield ratio has become a constant value for the Ar+ incidence, while it has exponentially increased below 1 keV for the O2+ incidence. It is found that the internal energy distribution of sputtered Cr atoms has been significantly influenced by oxygen density at the surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The application of an ion-guiding buffer gas-filled hexapole collision and reaction cell in ICP-MS has been studied in order to give a preliminary performance characterization of a new instrument providing this feature for increasing the ion yield and decreasing contributions from Ar induced interfering molecular ions. As buffer gas He was used while H2 served as reaction gas. Addition of the latter can be an effective means for reduction of typical argon induced polyatomic ions (Ar+, ArO+, Ar2 +) by orders of magnitude owing to gas phase reactions. Molecular interferences generated in the cell can be suppressed by a retarding electric field established by a dc hexapole bias potential of –2 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号