首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.  相似文献   

2.
By combining atomic layer deposition (ALD) and molecular layer deposition (MLD) thin-film techniques, the latter being a variant of the former in which organic precursors are used, it is possible to deposit thin films containing precisely controlled portions of inorganic and organic constituents. This in turn enables the adjustment of material properties by changing the number of ALD and MLD cycles applied during the deposition. In this work, the properties of such thin-film "alloys" prepared by varying the portions of Ti-4,4'-oxydianiline (Ti-ODA) inorganic-organic hybrid and TiO(2) in the structure were investigated. The films were deposited at 280 °C using TiCl(4) and water as precursors for TiO(2), and TiCl(4) and ODA for the Ti-ODA hybrid. The results demonstrate excellent tunability of the film properties such as degree of crystallinity, roughness, refractive index, and hardness depending on the relative number of TiO(2) and Ti-ODA cycles employed.  相似文献   

3.
The initial surface reactions involved in the atomic layer deposition (ALD) of TiO2 from TiI4 and H2O onto a SiO2 substrate have been investigated using electronic structure calculations based on cluster models. The detailed atomic growth mechanisms on different types of functionalities on the SiO2 substrate have been proposed. The effects of quantum tunneling and hindered rotations of adsorbates on the rate of surface reactions have been investigated. The effects of tunneling were found to be negligible for all reactions, because typical ALD temperatures range from 150 to 450 degrees C. However, the rotational contributions to the rate constants must be taken into account in certain cases. All of the three surface functionalities investigated exhibit high chemical reactivity toward TiI4 precursors at typical ALD temperatures. The rate constants of the second half-reactions between Ti intermediates and H2O are 5-8 orders of magnitude smaller than the first half-reactions between TiI4 and the surface functionalities. Although the iodine release reaction has been used to explain previous experimental measurements, it is predicted to be unfavorable (kinetically and thermodynamically) and is unlikely to occur at typical ALD temperatures. Substitution of TiI4 with TiCl4 as the metal precursor can increase the binding energies of the absorbates onto the surface due to the high electronegativity of the Cl ligands. However, the activation barriers are not significantly different between these two metal precursors. More importantly, our calculations predict that TiI4 precursors tend to produce TiO2 films with fewer impurities than the TiCl4 precursors.  相似文献   

4.
Surface modification plays a crucial role in improving the efficiency of dye-sensitized solar cells (DSSCs), but the reported surface treatments are in general superior to the untreated TiO(2) but inferior to the typical TiCl(4)-treated TiO(2) in terms of solar cell performance. This work demonstrates a two-step treatment of the nanoporous titania surface with strontium acetate [Sr(OAc)(2)] and TiCl(4) in order, each step followed by sintering. An electronically insulating layer of SrCO(3) is formed on the TiO(2) surface via the Sr(OAc)(2) treatment and then a fresh TiO(2) layer is deposited on top of the SrCO(3) layer via the TiCl(4) treatment, corresponding to a double layer of Sr(OAc)(2)/TiO(2) coated on the TiO(2) surface. As compared to the typical TiCl(4)-treated DSSC, the Sr(OAc)(2)-TiCl(4) treated DSSC improves short-circuit photocurrent (J(sc)) by 17%, open-circuit photovoltage (V(oc)) by 2%, and power conversion efficiency by 20%. These results indicate that the Sr(OAc)(2)-TiCl(4) treatment is better than the often used TiCl(4) treatment for fabrication of efficient DSSCs. Charge density at open circuit and controlled intensity modulated photocurrent/photovoltage spectroscopy reveal that the two electrodes show almost same conduction band level but different electron diffusion coefficient and charge recombination rate constant. Owing to the blocking effect of the SrCO(3) layer on electron recombination with I(3)(-) ions, the charge recombination rate constant of the Sr(OAc)(2)-TiCl(4) treated DSSC is half that of the TiCl(4)-treated DSSC, accounting well for the difference of their V(oc). The improved J(sc) is also attributed to the middle SrCO(3) layer, which increases dye adsorption and may improve charge separation efficiency due to the blocking effect of SrCO(3) on charge recombination.  相似文献   

5.
It is a common finding that titanocene-derived precursors do not yield TiO(2) films in atomic layer deposition (ALD) with water. For instance, ALD with Ti(OMe)(4) and water gives 0.5 ?/cycle, while TiCp*(OMe)(3) does not show any growth (Me = CH(3), Cp* = C(5)(CH(3))(5)). From mass spectrometry we found that Ti(OMe)(4) occurs in the gas phase practically exclusively as a monomer. We then used first principles density functional theory (DFT) to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)(3) lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O ('densification') during both of the ALD pulses. The effect of Cp* on Ti seems to be both steric (full coordination sphere) and electronic (lower electrophilicity). This crucial step in the sequence of ALD reactions is therefore not possible in the case of TiCp*(OMe)(3) + H(2)O, which means that there is no deposition of TiO(2) films.  相似文献   

6.
TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.  相似文献   

7.
We report on the fabrication of Cu(x)O-TiO(2) (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous Cu(x)O matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO(2) nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400-550 °C under wet oxygen atmospheres, adopting Cu(hfa)(2)·TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) and Ti(O-(i)Pr)(2)(dpm)(2) (O-(i)Pr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial Cu(x)O matrix and on the deposited TiO(2) amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.  相似文献   

8.
We present a density functional theory (DFT) study of the initial surface reactions of TiO2 deposition onto a SiO2 substrate using atomic layer deposition (ALD). The precursors for the deposition process were chosen to be TiCl4 and H2O, and several cluster models were used for the SiO2 substrate. We predict the activation barriers, transition states, and reaction pathways of the surface reactions, and we investigate the effect of surface heterogeneity (such as the presence of siloxane bridges) on the reactivity of the SiO2 surface. Our study suggests that the concentration and arrangement of different reactive groups on the substrate will strongly dictate the process of film growth during ALD, including the film morphology and the growth rate.  相似文献   

9.
The heterogeneous interaction of H(2)O(2) with TiO(2) surface was investigated under dark conditions and in the presence of UV light using a low pressure flow tube reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of gaseous H(2)O(2) ([H(2)O(2)](0) = (0.17-120) × 10(12) molecules cm(-3)), irradiance intensity (J(NO(2)) = 0.002-0.012 s(-1)), relative humidity (RH = 0.003-82%), and temperature (T = 275-320 K). Under dark conditions, a deactivation of TiO(2) surface upon exposure to H(2)O(2) was observed, and only initial uptake coefficient of H(2)O(2) was measured, given by the following expression: γ(0)(dark) = 4.1 × 10(-3)/(1 + RH(0.65)) (calculated using BET surface area, estimated conservative uncertainty of 30%) at T = 300 K. The steady-state uptake coefficient measured on UV irradiated TiO(2) surface, γ(ss)(UV), was found to be independent of RH and showed a strong inverse dependence on [H(2)O(2)] and linear dependence on photon flux. In addition, slight negative temperature dependence, γ(ss)(UV) = 7.2 × 10(-4) exp[(460 ± 80)/T], was observed in the temperature range (275-320) K (with [H(2)O(2)] ≈ 5 × 10(11) molecules cm(-3) and J(NO(2)) = 0.012 s(-1)). Experiments with NO addition into the reactive system provided indirect evidence for HO(2) radical formation upon H(2)O(2) uptake, and the possible reaction mechanism is proposed. Finally, the atmospheric lifetime of H(2)O(2) with respect to the heterogeneous loss on mineral dust was estimated (using the uptake data for TiO(2)) to be in the range of hours during daytime, i.e., comparable to H(2)O(2) photolysis lifetime (~1 day), which is the major removal process of hydrogen peroxide in the atmosphere. These data indicate a strong potential impact of H(2)O(2) uptake on mineral aerosol on the HO(x) chemistry in the troposphere.  相似文献   

10.
The palladium(II)-substituted tungstosilicate [Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)](9)(-) (1) has been synthesized and characterized by IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on Cs(3)K(2)Na(4)[Cs(2)K(H(2)O)(7)Pd(2)WO(H(2)O)(A-alpha-SiW(9)O(34))(2)].5H(2)O (1a), which crystallizes in the monoclinic system, space group P2(1)/n, with a = 16.655(3) A, b = 19.729(4) A, c = 25.995(5) A, beta = 95.46(3) degrees , and Z = 4. Polyanion 1represents the first structurally characterized palladium(II)-substituted tungstosilicate. The title polyanion consists of two (A-alpha-SiW(9)O(34)) Keggin moieties linked via a [WO(H(2)O)](4+) group and two equivalent, square-planar Pd(2+) ions leading to a sandwich-type structure with C(2)(v) symmetry. The central belt of 1 contains also one potassium and two cesium ions. Polyanion 1 was synthesized by reaction of Pd(CH(3)COO)(2) with K(10)[A-alpha-SiW(9)O(34)] in aqueous acidic medium (pH 4.8). A cyclic voltammetry study of polyanion 1 in a pH 5 medium shows a Pd(0) deposition process on the glassy carbon electrode surface. The corresponding wave and that of tungsten redox processes could be separated clearly during the first few runs before their merging into a broad composite wave. The film thickness increases with the number of potential cycles or the duration of potentiostatic electrolysis. As judged from hydrogen sorption/desorption pattern, the quality of the film deposited from polyanion 1 is better than that of a film deposited directly from Pd(2+) solutions.  相似文献   

11.
Thin films of ceria (CeO(2)) have many applications, and their synthesis by liquid-injection MOCVD (metal-organic chemical vapor deposition) or ALD (atomic layer deposition) requires volatile precursor compounds. Here we report the synthesis of a series of homoleptic and heteroleptic Ce(IV) complexes with donor-functionalized alkoxide ligands mmp (1-methoxy-2-methylpropan-2-olate), dmap (1-(dimethylamino)propan-2-olate), and dmop (2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)propan-2-olate) and their potential as precursors for MOCVD and ALD of CeO(2). New complexes were synthesized by alcohol exchange reactions with [Ce(OBu(t))(4)]. [Ce(mmp)(4)] and [Ce(dmap)(4)] were both found to be excellent precursors for liquid-injection MOCVD of CeO(2), depositing high purity thin films with very low carbon contamination, and both have a large temperature window for diffusion controlled growth (350-600 °C for [Ce(mmp)(4)]; 300-600 °C for [Ce(dmap)(4)]). [Ce(mmp)(4)] is also an excellent precursor for liquid-injection ALD of CeO(2) using H(2)O as oxygen source and demonstrates self-limiting growth from 150 to 350 °C. [Ce(dmap)(4)] has lower thermal stability than [Ce(mmp)(4)] and does not show self-limiting growth in ALD. Heteroleptic complexes show a tendency to undergo ligand redistribution reactions to form mixtures in solution and are unsuitable as precursors for liquid-injection CVD.  相似文献   

12.
Despite the industrial importance of the process, the detailed chemistry of the high-temperature oxidation of titanium tetrachloride (TiCl4) to produce titania (TiO2) nanoparticles remains unknown, partly due to a lack of thermochemical data. This work presents the thermochemistry of many of the intermediates in the early stages of the mechanism, computed using quantum chemistry. The enthalpies of formation and thermochemical data for TiOCl, TiOCl2, TiOCl3, TiO2Cl2, TiO2Cl3, Ti2O2Cl3, Ti2O2Cl4, Ti2O3Cl2, Ti2O3Cl3, Ti3O4Cl4, and Ti5O6Cl8 were calculated using density functional theory (DFT). The use of isodesmic and isogyric reactions was shown to be important for determining standard enthlapy of formation (Delta(f)H(degree)(298K)) values for these transition metal oxychloride species. TiOCl2, of particular importance in this mechanism, was also studied with CCSD(T) and found to have Delta(f)H(degree)(298K) = -598 +/- 20 kJ/mol. Finally, equilibrium calculations were performed to identify which intermediates are likely to be most prevalent in the high temperature industrial process, and as a first attempt to identify the size of the critical nucleus.  相似文献   

13.
This paper reveals the fact that the O adatoms (O(ad)) adsorbed on the 5-fold Ti rows of rutile TiO(2)(110) react with CO to form CO(2) at room temperature and the oxidation reaction is pronouncedly enhanced by Au nano-clusters deposited on the above O-rich TiO(2)(110) surfaces. The optimum activity is obtained for 2D clusters with a lateral size of ~1.5 nm and two-atomic layer height corresponding to ~50 Au atoms∕cluster. This strong activity emerging is attributed to an electronic charge transfer from Au clusters to O-rich TiO(2)(110) supports observed clearly by work function measurement, which results in an interface dipole. The interface dipoles lower the potential barrier for dissociative O(2) adsorption on the surface and also enhance the reaction of CO with the O(ad) atoms to form CO(2) owing to the electric field of the interface dipoles, which generate an attractive force upon polar CO molecules and thus prolong the duration time on the Au nano-clusters. This electric field is screened by the valence electrons of Au clusters except near the perimeter interfaces, thereby the activity is diminished for three-dimensional clusters with a larger size.  相似文献   

14.
The preparation of new "scorpionate" ligands in the form of the lithium derivatives [(Li(bdmpzdta)(H(2)O))(4)] (1) [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], [Li(bdphpza)(H(2)O)(THF)] (2) [bdphpza = bis(3,5-diphenylpyrazol-1-yl)acetate], and [Li(bdphpzdta)(H(2)O)(THF)] (3) [bdphpzdta = bis(3,5-diphenylpyrazol-1-yl)dithioacetate] has been carried out. Furthermore, a series of titanium complexes has been prepared by reaction of TiCl(4)(THF)(2) with the lithium reagents [(Li(bdmpza)(H(2)O))(4)] (4) [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and 1. Under the appropriate experimental conditions neutral complexes, namely [TiCl(3)(kappa(3)-bdmpza)] (5), [TiCl(3)(kappa(3)-bdmpzdta)] (6), and [TiCl(2)(kappa(2)-bdmpzdta)(2)] (7), and cationic complexes, namely [TiCl(2)(THF)(kappa(3)-bdmpza)]Cl (8) and [TiCl(2)(THF)(kappa(3)-bdmpzdta)]Cl (9), were isolated. Complexes 8 and 9 undergo an interesting nucleophilic THF ring-opening reaction to give the corresponding alkoxide-containing species [TiCl(2)(kappa(3)-bdmpza)(O(CH(2))(4)Cl)] (10) and [TiCl(2)(kappa(3)-bdmpzdta)(O(CH(2))(4)Cl)] (11). A family of alkoxide-containing complexes of general formulas [TiCl(2)(kappa(3)-bdmpza)(OR)] [R = Me (12); R = Et (14); R = (i)Pr (16); R = (t)Bu (18)] and [TiCl(2)(kappa(3)-bdmpzdta)(OR)] [R = Me (13); R = Et (15); R = (i)Pr (17)] was also prepared. The structures of these complexes have been determined by spectroscopic methods, and in addition, the X-ray crystal structures of 3, 7, 10, and 11 were also established.  相似文献   

15.
It has been well illustrated that the rapid catalyst deactivation with time is the most serious limitation of vapor phase approach to the production of ε-caprolactam from cyclohexanone oxime (CHO) (Scheme 1), and is a common problem with all catalyst typ…  相似文献   

16.
The surface chemistry of atomic layer depositions (ALD) of titanium nitride films using alternate doses of TiCl4 and NH3 was characterized by using X-ray photoelectron spectroscopy. The nature of the species deposited by each half-reaction was explored first. Evidence was obtained for the partial loss of chlorine atoms and the reduction of the metal during the adsorption of the TiCl4. Subsequent ammonia treatment removes most of the remaining chlorine and leads to the formation of a nitride. Both half-reactions were proven self-limited, stopping after the deposition of submonolayer quantities of the materials. Repeated ALD cycles were shown to lead to the buildup of thick films. However, those films display a Ti3N4 layer on top of the expected TiN. The data suggest that the reduction of the Ti4+ species may therefore occur during the TiCl4, not NH3, dosing step. The incorporation of impurities in the films was also investigated. Chlorine is only deposited on the surface, and in negligible quantities. This Cl appears to originate from readsorption of the HCl byproduct, and could be removed by light sputtering, heating, or further ammonia treatment. Oxygen incorporation, on the other hand, was unavoidable and was determined to possibly come from diffusion from the underlying substrate.  相似文献   

17.
Density functional molecular cluster calculations have been used to investigate the interaction of SO(2) with defect-free TiO(2)(110) and Ti(2)O(3)(102) surfaces. Adsorbate geometries and chemisorption enthalpies have been computed and discussed. Several local minima have been found for TiO(2)(110), but only one seems to be relevant for the catalytic conversion of SO(2) to S. In agreement with experiment, the bonding of SO(2) to Ti(2)O(3)(102) is much stronger than that on TiO(2)(110). Moreover, our results are consistent with the surface oxidation and the formation of strong Ti-O and Ti-S bonds. On both substrates, the bonding is characterized by a two-way electron flow involving a donation from the SO(2) HOMO into virtual orbitals of surface Lewis acid sites (), assisted by a back-donation from surface states into the SO(2) LUMO. However, the localization of surface states and the strength of back-donation are very different on the two surfaces. On TiO(2)(110), back-donation is weaker, and it involves unsaturated bridging O atoms, while on Ti(2)O(3)(102), it implies the -based valence band maximum and significantly weakens the S-O bond.  相似文献   

18.
The coupling of TiO(2) and transition metal complexes is attempted with the aim of higher functionalization of the TiO(2) photocatalyst. UV irradiation (lambda(ex)>300 nm) of a TiO(2) suspension containing equimolar aqueous solutions of FeCl(3) and K(3)[Fe(CN)(6)] forms uniform thin films of "water-insoluble Prussian blue" (PB, Fe(4)(3+) [Fe(II)(CN)(6)](3)) on the surface of TiO(2) particles. The PB photodeposition is enhanced significantly by the addition of a small amount of CH(3)OH in both the rutile and anatase TiO(2) systems. The activity of anatase TiO(2) is greater than that of rutile in the presence of CH(3)OH (2.46 M) by a factor of 1.6+/-0.2, whereas the activities are comparable in the absence of CH(3)OH. These results are discussed on the basis of a proposed reaction mechanism. Copyright 2001 Academic Press.  相似文献   

19.
The ruthenium complex bis-tetrabutylammonium cis-dithiocyanato-N,N'-bis-2,2'-bipyridine-4-carboxylic acid, 4'-carboxylate ruthenium(II), N-719, was found to block the dark current of dye sensitized solar cells (DSC), based on mesoporous TiO2 films deposited on a F-doped tin oxide electrode and the effect was compared to surface treatment by TiCl4 and the introduction of a compact TiO2 blocking layer.  相似文献   

20.
Dye-sensitized solar cells (DSSCs) were prepared by capitalizing on mesoporous P-25 TiO(2) nanoparticle film sensitized with N719 dyes. Subjecting TiO(2) nanoparticle films to TiCl(4) treatment, the device performance was improved. More importantly, O(2) plasma processing of TiO(2) film that was not previously TiCl(4)-treated resulted in a lower efficiency; by contrast, subsequent O(2) plasma exposure after TiCl(4) treatment markedly enhanced the power conversion efficiency, PCE, of DSSCs. Remarkably, with TiCl(4) and O(2) plasma treatments dye-sensitized TiO(2) nanoparticle solar cells produced with 21 μm thick TiO(2) film illuminated under 100 mW/cm(2) exhibited a PCE as high as 8.35%, twice of untreated cells of 3.86%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号