首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

2.
The post-growth modification of diamond-like amorphous hydrogenated carbon a-C:H films by laser treatment has been studied by transmission electron microscopy and Raman spectroscopy. a-C:H films grown on Si substrates by benzene decomposition in a rf glow discharge were irradiated with 15 ns pulses of a KrF-excimer laser with fluences in the range of E=50–700 mJ/cm2. At fluences below 100 mJ/cm2 an increase in the number of graphitic clusters and in their ordering was evidenced from Raman spectra, while the film structure remained amorphous according to electron microscopy and electron diffraction observations. At higher fluences the appearance of diamond particles of 2–7 nm size, embedded into the lower crystallized graphitic matrix, was observed and simultaneously a progressive growth of graphite nanocrystals with dimensions from 2 nm to 4 nm was deduced from Raman measurements. The maximum thickness of the crystallized surface layer (400 nm) and the degree of laser annealing are limited by the film ablation which starts at E>250 mJ/cm2. The laser-treated areas lose their chemical inertness. In particular, chemical etching in chromium acid becomes possible, which may be used for patterning the highly inert carbon films.  相似文献   

3.
Metal films containing silver and gold layers having different thicknesses were evaporated on glass substrates. Two-beam interference technique was applied to irradiate the surfaces by the fourth harmonic of a pulsed mode Nd:YAG laser. The atomic force microscopical study showed that surface relief grating having a period of 900 nm corresponding to the interference pattern was developed on the metallic films. The modulation amplitude of the laser-induced gratings was increasable by enhancing the number of laser pulses at constant fluence, and a groove depth commensurable with the film thicknesses was generated at the average fluence of 39.5 mJ/cm2 on bimetallic layers. The surface structure was more regular, and the modulation amplitude was larger in case of bimetallic films containing thicker gold layers. The threshold fluences of the phase transitions were determined by numerical temperature model calculations for different metal layer compositions, and a good agreement was found between the calculated and experimentally observed threshold values. The division of the metal stripes into droplets and the development of holes were explained by the melting of the entire metal layers and by the vaporization of silver at higher fluences. The angle-dependent surface plasmon resonance spectroscopy realized in Kretschmann arrangement proved that the laser-induced grating formation was accompanied by the change in the optical thickness and by the modification of the structure of the bimetallic films. Broad side wings appeared on the resonance curves caused by grating-coupling in case of appropriate rotation angle and sufficiently large modulation depth of the grating's grooves, according to our calculations. The coupling on deep gratings developed on bimetallic films containing the thinnest gold layer and on monometallic silver films resulted in separated secondary resonance minimum development. The periodic adherence of native streptavidin on the metallic gratings was detected by tapping mode AFM, and based on the shift of the secondary resonance peak.  相似文献   

4.
The properties of indium tin oxide (ITO) thin films, deposited at room temperature by simultaneous pulsed laser deposition (PLD), and laser irradiation of the substrate are reported. The films were fabricated from different Sn-doped In2O3 pellets at an oxygen pressure of 10 mTorr. During growth, a laser beam with an energy density of 0, 40 or 70 mJ/cm2 was directed at the middle part of the substrate, covering an area of ∼1 cm2. The non-irradiated (0 mJ/cm2) films were amorphous; films irradiated with 40 mJ/cm2 exhibited microcrystalline phases; and polycrystalline ITO films with a strong 〈111〉> preferred orientation was obtained for a laser irradiation density of 70 mJ/cm2. The resistivity, carrier density, and Hall mobility of the ITO films were strongly dependent on the Sn doping concentration and the laser irradiation energy density. The smallest resistivity of ∼1×10-4 Ω cm was achieved for a 5 wt % Sn doped ITO films grown with a substrate irradiation energy density of 70 mJ/cm2. The carrier mobility diminished with increasing Sn doping concentration. Theoretical models show that the decrease in mobility with increasing Sn concentration is due to the scattering of electrons in the films by ionized centers. PACS 81.15.Fg; 73.61.-r; 73.50.-h  相似文献   

5.
Surface relief gratings (SRG) and self-organized nano-structures induced by laser light at 157 nm on the fluoropolymer poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA), films were obtained under well-controlled light exposure conditions. Regular and semi-regular spaced self-organized grating-like structures were created on polymeric films for ∼7.5-100 mJ/cm2 laser energy fluence. For lower laser fluence, the surface morphology of light exposed/non-exposed areas exhibited irregular-like structure morphologies, while polymer surface irradiation with energy fluence higher than 150 mJ/cm2 causes progressively fading out of the regular patterns. Under the specific experimental conditions, the SRG and self-organization patterning have their origin in the development of a surface thermal instability (Rayleigh's instability), which is resolved itself into regular patterns on the surface of the fluoropolymer film. The thermal instability is due to the explosive polymer surface photo-dissociation at 157 nm and the build up of longitudinal and periodic surface stress, which eventually create the SRG and the self-assembled structures on the polymer.  相似文献   

6.
Periodic arrays of submicron Si and Ni dots were fabricated by only irradiating a linearly polarized Nd:YAG pulsed laser beam to Si and Ni thin films deposited on silicon dioxide (SiO2) film. The interference between an incident beam and a scattered surface wave leads to the spatial periodicity of beam energy density distribution on the surface of the irradiated samples. A thin film was melted using a laser beam, and the molten film was split and condensed owing to its surface tensile according to the periodic energy density distribution. Then, the fine lines (line and space structure) were formed periodically. After the formation of fine lines, the sample was rotated by 90°, and the laser beam was irradiated. The periodic energy density distribution was generated on the fine lines, and the lines were split and condensed. Eventually, the periodically aligned submicron dots were fabricated on the SiO2 film. PACS 79.20.Ds; 42.62.-b; 81.40.-z  相似文献   

7.
Polyethylene terephthalate (PET) films preheated with a pulsed CO2 laser have been ablatively etched with an XeCl laser. The observed reduction in ablation threshold, from 170 to 140 mJ cm–2, is consistent with a thermal mechanism for XeCl laser ablation of PET. Transient changes in the UV absorption coefficient of PET caused by heating with pulsed CO2 laser radiation have also been studied and a significant increase in absorption observed at 308 nm. Permanent changes in the ultraviolet absorption of PET following exposure to low fluence XeCl laser radiation are also reported.  相似文献   

8.
The fabrication of three-dimensional layered structures with 180-nm-thick TaOx top layers supported by 1.5-μm-thick Mo pillars formed on a glass substrate is presented. The photoresist used for planarization was successfully removed through the TaOx layers using heat treatment at 270 °C with mixed vapors of ethyl alcohol and pure water at high pressure for 3 h. Vacancies underlying the TaOx layers were consequently formed. The possibility of rapid and lateral crystallization of amorphous silicon films was demonstrated when the silicon films formed on the TaOx overlaying the vacancy regions were irradiated using a frequency-doubled YAG laser at 250 mJ/cm2. Energy sensors using Cr/Al metal wires, with a high sensitivity of 0.07 mW/cm2, were also demonstrated using the present structure with vacancy regions for reduction of heat diffusion. Received: 22 January 2001 / Accepted: 24 January 2001 / Published online: 27 June 2001  相似文献   

9.
Thin films of polyethylene glycol (PEG) of average molecular weight, 1400 amu, were deposited by both matrix-assisted pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD). The deposition was carried out in vacuum (∼10-6 Torr) with an ArF (λ=193 nm) laser at a fluence between 150 and 300 mJ/cm2. Films were deposited on NaCl plates, Si(111) wafers, and glass slides. The physiochemical properties of the films are compared via Fourier transform infrared spectroscopy (FTIR), electrospray ionization (ESI) mass spectrometry, and matrix-assisted laser desorption and ionization (MALDI) time-of-flight mass spectrometry. The results show that the MAPLE films nearly identically resemble the starting material, whereas the PLD films do not. These results are discussed within the context of biomedical applications such as drug delivery coatings and in vivo applications where there is a need for transfer of polymeric coatings of PEG without significant chemical modification. Received: 2 March 2001 / Accepted: 5 March 2001 / Published online: 23 May 2001  相似文献   

10.
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass substrate and subsequently irradiated by UV radiation using a KrF excimer laser. In this work, we have study the influence of the laser fluence (F) ranging between 0.05 and 0.40 mJ/cm2 on the constitution and microstructure of the deposited films. Irradiated thin films are characterized by profilometry, scanning electron microscopy and X-ray diffraction. As deposited films are amorphous, while irradiated films present an anatase structure. The crystallinity of the films strongly varies as a function of F with maximum for F = 0.125 J/cm2. In addition to the modification of their constitution, the irradiated areas present a strongly modified microstructure with appearance of nanoscale features. The physico-chemical mechanisms of these structural modifications are discussed based on the theory of nucleation.  相似文献   

11.
The probe-beam transmission method was used to study the chemical vapor deposition of chromium films due to photodecomposition of Cr(CO)6 by pulsed excimer laser radiation at 248 nm in a reversed-substrate configuration, where the film forms on the quartz entrance window of the deposition cell. The dependence of the deposition rate and the film formation time on the laser pulse intensity and repetition rate as well as on the Ar buffer gas pressure was determined for different stages of the deposition process. The experiments were performed at room temperature, on a deposition area of about 0.15 cm2, with laser fluences up to 100mJ cm–2, pulse repetition rates between 5 and 80 pps and buffer gas pressures between 10 and 700 mbar. The results are discussed within the framework of a simple model for LICVD. They reveal the dominant role of gas-phase photodissociation and diffusion in chromium film deposition under the conditions employed. Some results concerning the morphology and the depth distribution of Cr, O, and C in films deposited in the reversed-substrate configuration are also presented.  相似文献   

12.
Pulsed laser desorption and film deposition behaviors have been investigated on pentacene as an organic molecule primarily due to its applications in electronics. The laser desorption time-of-flight (LDTOF) mass spectrum exhibited a single parent peak when a pressed pentacene pellet was ablated by an N2 laser beam of its fluence lower than 100 mJ/cm2, indicating that pentacene could be evaporated without an appreciable photodecomposition by the pulsed laser beam. Nd:YAG pulsed laser deposition of pentacene films was performed using such optimization parameters as laser fluences and wavelength (second, third and forth harmonic generations (SHG, THG, FHG)). The analyses with AFM, XRD and UV-Vis spectroscopy revealed the fabrication of c* axis oriented pentacene films on quartz, silicon, and CaF2 substrates by the SHG. The SHG films have a surface morphology superior to those of films deposited by THG and FHG. PACS 81.15.Fg; 81.05.Lg; 82.80.Rt  相似文献   

13.
Laser induced backside dry etching method (LIBDE) was developed - analogously to the well-known laser induced backside wet etching (LIBWE) technique - for the micromachining of transparent materials. In this procedure, the absorbing liquid applied during LIBWE was replaced with solid metal layers. Fused silica plates were used as transparent targets. These were coated with 15-120 nm thick layers of different metals (silver, aluminium and copper). The absorbing films were irradiated by a nanosecond KrF excimer laser beam through the quartz plate. The applied fluence was varied in the 150-2000 mJ/cm2 range, while the irradiated area was between 0.35 and 3.6 mm2. At fluences above the threshold values, it was found that the metal layers were removed from the irradiated spots and the fused silica was etched at the same time. In our experiments, we investigated the dependence of the main parameters (etch rate and threshold) of LIBDE on the absorption of the different metal layers (silver, copper, aluminium), on the size of the irradiated area, on the film thickness and on the number of processing laser pulses.  相似文献   

14.
A SnO2 film has been prepared by an excimer laser metal organic deposition (ELMOD) process using an XeCl laser. The effects of the laser fluence, shot number, and the pretreatment temperature of the Sn acetylacetonate (Sn-acac) on the crystallization of the SnO2 film were investigated by X-ray diffraction and infrared spectroscopy. When the MO spin-coated film preheated at room temperature on a Si substrate was irradiated by the laser at a fluence of 100 mJ/cm2 and at a repetition rate of 10 Hz for 5 min, a crystallized SnO2 film was successfully obtained without heat treatment. At a fluence of 260 mJ/cm2, the highest crystalline film was formed. On the other hand, when the amorphous SnO2 film was irradiated by the laser at 260 mJ/cm2, the crystallinity of the SnO2 film was improved. SnO2 films were also prepared by conventional thermal MOD in a temperature range from 300 to 900 °C. The crystallinity of the SnO2 films prepared by the ELMOD process at room temperature was higher than that of the films prepared by heating at 900 °C for 60 min. PACS 81.15.Fg; 81.15.-z; 81.16.Mk; 82.50.Hp; 73.61.Le  相似文献   

15.
GaN films have been grown on Si(111) substrates with a thin AlN buffer layer using pulsed laser deposition (PLD) assisted by gas discharge. The crystalline quality, surface morphology and optoelectronic properties of the deposited films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) spectroscopy, and room-temperature Van der Pauw–Hall measurements. The influence of the deposition temperature in the range 637–1037 K on the crystallinity of GaN films, the laser incident energy in the range 150–250 mJ/pulse on the surface morphology and the optoelectronic properties were systematically studied. The XRD analysis shows that the crystalline quality of the GaN films improves with increasing deposition temperature to 937 K, but further increase of the deposition temperature to 1037 K leads to the degradation of the crystalline quality. AFM results show that the surface roughness of the GaN films can be decreased with increasing laser incident energy to 220 mJ/pulse. Further increase of the laser incident energy to 250 mJ/pulse leads to an increase in the surface roughness. The optoelectronic properties of GaN films were also improved by increasing the laser incident energy to 220 mJ/pulse. GaN films which have a n-type carrier concentration of 1.26×1017 cm-3 and a mobility of 158.1 cm2/Vs can be deposited at a substrate temperature of 937 K, a deposition pressure of 20 Pa and a laser incident energy of 220 mJ/pulse. Their room-temperature PL spectra exhibit a strong band-edge emission at 365 nm. PACS 81.15.Fg; 81.05.Ea; 78.20.-e; 73.61.Ey; 78.66.Fd  相似文献   

16.
We have developed a patterning procedure based on selective ablation using interference patterns with ns-laser pulses to fabricate periodic arrays on large areas of poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonic acid) (PEDOT-PSS) thin films over a metallic gold–palladium layer. Single pulse laser-ablation experiments were performed to study the ablation characteristics of the thin films as a function of the film thickness. The ablation threshold fluence of the PEDOT-PSS films was found to be dependent on thickness with values ranging from 43 mJ/cm2 to 252 mJ/cm2. Additionally, fluences at which the PEDOT-PSS films could be ablated without inducing damage in the underlying metallic films were observed (128 mJ/cm2 and 402 mJ/cm2 for film thicknesses of 70 nm and 825 nm, respectively). Linear periodic arrays with line spacings of 7.82 μm and 13.50 μm were also fabricated. The surface topography of these arrays was analyzed using scanning electron and atomic force microscopy. For thicker polymeric layers, several peeled sub-layers of the conjugated polymer with average thicknesses of about 165–185 nm were observed in the ablation experiments. The size and scale of structures produced by this technique could be suitable for several biomedical applications and devices in which controlling cell adhesion, promoting cell alignment, or improving biocompatibility are important.  相似文献   

17.
A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He–Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.  相似文献   

18.
High throughput and low cost fabrication techniques in the sub-micrometer scale are attractive for the industry. Laser interference lithography (LIL) is a promising technique that can produce one, two and three-dimensional periodical patterns over large areas. In this work, two- and four-beam laser interference lithography systems are implemented to produce respectively one- and two-dimensional periodical patterns. A high-power single pulse of ∼8 ns is used as exposure process. The optimum exposure dose for a good feature patterning in a 600 nm layer of AZ-1505 photoresist deposited on silicon wafers is studied. The best aspect ratio is found for a laser fluence of 20 mJ/cm2. A method to control the width of the sub-micrometer structures based on controlling the resist thickness and the laser fluence is proposed.  相似文献   

19.
CdS thin films have been grown on Si(1 1 1) and quartz substrates using femtosecond pulsed laser deposition. X-ray diffraction, atomic force microscopy, photoluminescence measurement, and optical transmission spectroscopy were used to characterize the structure and optical properties of the deposited CdS thin films. The influence of the laser fluence (laser incident energy in the range 0.5–1.5 mJ/pulse) on the structural and optical characterizations of CdS thin films has been studied. The results indicate that the structure and optical properties of the CdS thin films can be improved as increasing the per pulse output energy of the femtosecond laser to 1.2 mJ. But when the per pulse output energy of the femtosecond laser is further increased to 1.5 mJ, which leads to the degradation of the structure and optical properties of the CdS thin films.  相似文献   

20.
Quasi-simultaneous laser action in the UV (0.337 μm) and the IR (10.6 μm) was observed from a pulsed laser with a sliding discharge plasma cathode. The laser operates at atmospheric pressure, with a gas mixture of CO2/N2/He, at a 0.26/0.50/4.0 lmin−1 flow rate. Output energies of 30 mJ in the IR and 0.35 mJ in the UV were obtained, from a laser discharge volume of 38.0×1.0×2.8 cm3. The optimum gas mixtures have been determined and the temporal behavior of the discharge parameters, the performance characteristics of the laser and the beam spatial distributions were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号