首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method based on ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry ((Q-ToF)-MS) was developed for the analysis of 32 biologically active compounds including anti-inflammatories, analgesics, lipid regulators, psychiatric drugs, anti-ulcer agents, antibiotics, beta-blockers and phytoestrogens. This new method allows chromatographic analysis in 14 min, with instrumental detection limits from 2 to 84 pg, and limits of quantification ranging from 0.1 to 15 ng/L in tap water, and from 2 to 300 ng/L in wastewater. The potential of liquid chromatography with triple quadrupole mass spectrometry (LC/QqQ-MS) was compared with that of UPLC/(Q-ToF)-MS for the analysis of biologically active compounds in water samples. LC/Q-ToF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of ToF instruments diminishes the problem of isobaric interferences and helps the analysis of trace compounds in complex samples. In this work UPLC/Q-ToF chromatograms were recorded containing full scan spectral data. The m/z values of analytes were extracted from the total ion chromatogram (TIC) and the accurate masses of the compounds were obtained. In addition, to increase the selectivity of ToF measurements a narrow accurate mass interval (20 m m/z units mass window) was used to reconstruct the chromatographic traces. However, regarding quantitative performance in terms of dynamic range and limits of detection (LODs), typical LODs achieved by QqQ instruments operating in multiple-reaction monitoring (MRM) mode ranged from 1 to 50 ng/L in wastewater, and the linear response for QqQ instruments generally covers three orders of magnitude. This is an important advantage over ToF instruments and one of the reasons why QqQ instruments are widely used in quantitative environmental analysis.  相似文献   

2.
The combination of liquid chromatography and mass spectrometry (LC-MS) has been established to complement gas chromatography (GC)-MS in the analysis of non-volatile and labile drugs in complex materials. The possibilities of LC-MS in the pharmaceutical industry for the analysis of drug substances and dosage forms, metabolism studies and the elucidation of the structures of materials of biological origin are discussed. Instrumental requirements, limitations and applications of LC-MS are considered and experiences with LC-MS in routine applications are reported. Preliminary results obtained with thermospray LC-MS are compared with those using a direct liquid inlet interface.  相似文献   

3.
Capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) and electrospray (ES) or ion spray (IS) mass spectrometry (MS) are recently introduced techniques for elemental speciation. Both techniques have the potential for rapid elemental speciation with low detection limits. Examples of the use of CE-ICP-MS for elemental speciation of positive, neutral and negative species are discussed. Issues in interfacing CE and ICP-MS are considered briefly. The potential advantages and disadvantages of laminar flow in CE-ICP-MS are examined. Potential difficulties in CE-ICP-MS including loss of sample, chemical matrix effects and changes in speciation during separation are discussed. The interpretation of ES or IS-MS spectra and analysis of complex mixtures are considered. Calibration and chemical matrix effects are assessed. Potential pitfalls of interpreting bare metal ion spectra as elemental analysis are discussed. The need for fundamental understanding of the processes that control ES and IS-MS signals is examined. High conductivity samples currently present difficulties for CE-ICP-MS or ES and IS-MS.  相似文献   

4.
The use of powerful mass spectrometric detectors in combination with liquid chromatography has played a vital role to solve many problems related to food safety. Since this technique is especially well suited for, but not restricted to the analysis of food contaminants within the food safety area, this review is focused on providing an insight into this field. The basic legislation in different parts of the world is discussed with a focus on the situation within the European Union (EU) and why it favors the use of liquid chromatography–mass spectrometry (LC–MS). Main attention in this review is on the achievements that have been possible because of the latest advances and novelties in mass spectrometry and how these progresses have influenced the best control of food allowing an increase in the food safety and quality standards. Emphasis is given to the potential and pitfalls of the different LC–MS approaches as well as in its possibilities to address current hot issues in food safety, such as the development of large-scale multi-residue methods and the identification of non-target and unknown compounds. Last but not least, future perspectives and potential directions are also outlined highlighting prospects and achievements.  相似文献   

5.
The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O3-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O3-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O3-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O3-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.  相似文献   

6.
The degradation of tetracycline (1) by ozone in aqueous solution was investigated. High performance liquid chromatography (HPLC), UV-visible spectroscopy (UV-Vis), and total organic carbon (TOC) analyses revealed that although tetracycline was quickly consumed under this oxidative condition, it did not mineralize at all. Continuous monitoring by electrospray ionization mass spectrometry in the positive ion mode, ESI(+)-MS, revealed that tetracycline (1), detected in its protonated form ([1 + H]+) of m/z 445, reacted to yield almost exclusively two unprecedented oxidation products (2 and 3) via a net insertion of one and two oxygen atoms, respectively. Compound 2, suggested to be formed via an initial 1,3-dipolar cycloaddition of ozone at the C11a-C12 double-bond of 1, and Compound 3, proposed to be produced via a subsequent ozone attack at the C2-C3 double-bond of 2, were detected in their protonated forms in the ESI(+)-MS, i.e., [2 + H]+ of m/z 461 and [3 + H]+ of m/z 477, and were further characterized by ESI(+)-MS(n). LC-APCI(+)-MS (liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry in the positive ion mode) experiments corroborated the results.  相似文献   

7.
In this paper, analysis strategies developed for a sequencing problem concerning the identification of an S100 protein isolated from human granulocytes are discussed. The analysis of a trypsinized lyophilized sample suggested the presence of a number of peptides which are non-tryptic in origin. During purification of proteins from cell lysates nonspecific cleavage can be observed which may reflect biological processes and can become an unavoidable analytical problem. Current mass spectrometric software is evaluated for the analysis of nonspecific digests in this context. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), high-performance liquid chromatography (HPLC)-MS/MS, and selected ion monitoring (SIM)-MS/MS have been used for peptide analysis and in addition HPLC-MS was carried out for protein analysis leading to the detection of an N-terminal modification of the protein. The success of the study is mainly due to the careful investigation of nonspecific cleavage products. Data obtained from the routine mass spectrometric analysis of an in-gel-digest allowed the identification of this protein as S100 calcium-binding protein A6-calcyclin whose expression in granulocytes has not been described so far.  相似文献   

8.
Ion-spray mass spectrometry was investigated for the analysis of 21 antibacterial sulfonamide drugs. All of the sulfonamides analyzed gave positive ion mass spectra with abundant protonated molecules and no fragmentation. Tandem mass spectrometry (MS-MS) using collision-induced dissociation provided structural information, allowing the identification of common fragmentation pathways and the differentiation of isomeric and isobaric sulfonamides. A reversed-phase high-performance liquid chromatographic method was developed, using gradient elution and ultraviolet diode-array detection (DAD), enabling the separation of 16 of the sulfonamides. Combined liquid chromatography (LC)-MS was accomplished using the ion-spray interface. Analyses of a mixture of sulfonamide standards were performed with gradient elution and the mass spectrometer configured for full-scan acquisition, selected-ion monitoring, or selected-reaction monitoring. Procedures for the analysis of sulfadimethoxine (SDM), a representative sulfonamide used in the aquaculture industry, are described. The presence of SDM in cultured salmon flesh was confirmed at levels as low as 25 ng/g by a combination of LC-DAD and LC-MS-MS.  相似文献   

9.
The use of the novel atmospheric pressure chemical ionization (APCI) source for gas chromatography (GC) coupled to triple quadrupole using tandem mass spectrometry (MS/MS) and its potential for the simultaneous determination of the 12 dioxin-like polychlorobiphenyls (DL-PCBs) in complex food and feed matrices has been evaluated.  相似文献   

10.
综述了毛细管电泳与电喷雾质谱联用的接口技术、分离模式及其在蛋白质分析领域中的应用,特别是毛细管等电聚焦与电喷雾质谱联用在蛋白质组学中研究进展。  相似文献   

11.
The use of liquid chromatography coupled to orthogonal acceleration time-of-flight mass spectrometry (LC-ToF-MS) provides an attractive alternative to liquid chromatography coupled to quadrupole (LC-MS) or triple quadrupole mass spectrometry (LC-MS/MS) in multiresidue analysis. ToF-MS provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. In this work, the influential parameters in time-of-flight detection using an electrospray ionization (ESI) source were studied using a central composite design to obtain the main effects and their two-factor interactions. The method developed uses LC-ESI-ToF-MS to determine and characterize quinolones regulated by the EU in pig liver samples below the maximum residue limits (MRLs). Linearity, decision limit, detection capability, detection and quantification limits, precision and recoveries were determined and adequate results were obtained, with quantification limits between 1.5 and 6 microg kg(-1) and recoveries higher than 60% for all quinolones. Limits of detection are lower than 2 microg kg(-1). Results obtained using LC-ESI-ToF-MS were compared with those obtained using LC coupled to a quadrupole and to triple quadrupole mass spectrometer. The work described in this paper illustrates the suitability and excellent confirmatory potential of LC-ToF-MS for multiresidue analysis in food samples.  相似文献   

12.
The state-of-the-art and trends of development in atomic spectrometry with microwave-induced plasmas (MIPs) since the 1998s are presented and discussed. This includes developments in devices for producing microwave plasma discharges, with reference also to miniaturized systems as well as to progress in sample introduction for microwave-induced plasmas, such as pneumatic and ultrasonic nebulization using membrane desolvation, to the further development of gaseous analyte species generation systems and to both spark and laser ablation (LA). The features of microwave-induced plasma mass spectrometry (MIP-MS) as an alternative to inductively coupled plasma (ICP)-MS are discussed. Recent work on the use of microwave-induced plasma atomic spectrometry for trace element determinations and monitoring, their use as tandem sources and for particle sizing are discussed. Recent applications of the coupling of gas chromatography and MIP atomic spectrometry for the determination of organometallic compounds of heavy metals such as Pb, Hg, Se and Sn are reviewed and the possibilities of trapping for sensitivity enhancement, as required for many applications especially in environmental work, are showed at the hand of citations from the recent literature.  相似文献   

13.
A comparison of different separation methods (high-performance liquid chromatography (HPLC), capillary HPLC (CHPLC) and pressurized capillary electrochromatography (pCEC)) coupled on-line with mass spectrometry (MS) is undertaken using the separation of a crude extract of ergot fungus (secalis cornuti) as an example. New and simple setups for a two-dimensional CHPLC coupled on-line with electrospray ionization (ESI)-MS (2D-CHPLC-MS) as well as for capillary size-exclusion chromatography performed under pCEC conditions and coupled on-line with ESI-MS (CSEC-pCEC-MS) are shown. In addition, an improved method for column packing is presented.  相似文献   

14.
The high selectivities of liquid chromatography and mass spectrometry make liquid chromatography–mass spectrometry one of the most popular tools for quantitative analysis in complex chemical, biological, and environmental systems, while the potential mathematical selectivity of liquid chromatography–mass spectrometry is rarely investigated. This work discussed the mathematical selectivity of liquid chromatography–mass spectrometry by three‐way calibration based on the trilinear model, with an application to quantitative analysis of coeluting aromatic amino acids in human plasma. By the trilinear decomposition of the constructed liquid chromatography–mass spectrometry‐sample trilinear model and individual regression of the decomposed relative intensity versus concentration, the proposed three‐way calibration method successfully achieved quantitative analysis of coeluting aromatic amino acids in human plasma, even in the presence of uncalibrated interferent(s) and a varying background. This analytical method can ease the requirements for sample preparation and complete chromatographic separation of components, reduce the use of organic solvents, decrease the time of chromatographic separation, and increase the peak capacity of liquid chromatography–mass spectrometry. As a “green analytical method”, the liquid chromatography–mass spectrometry three‐way calibration method can provide a promising tool for direct and fast quantitative analysis in complex systems containing uncalibrated spectral interferents, especially for the situation where the coelution problem is difficult to overcome.  相似文献   

15.
A method is developed for the analysis of allantoin, gallic acid, dihydromelittoside, loganin, paeoniflorin, benzoylpaeoniflorin, and paeonol in Liuwei Dihuang tablets by high-performance liquid chromatography (HPLC)-UV-mass spectrometry (MS)-MS. Gradient elution with methanol-acetonitrile-water-formic acid solvent system is employed in the HPLC-electrospray ionization-MS study. The positive-ion ESI mode is suitable for these compounds. The peaks of gallic acid, loganin, dihydromelittoside, paeoniflorin, benzoylpaeoniflorin, and paeonol are identified by their mass spectra and the fragments of their MS-MS spectra. Allantoin, gallic acid, loganin, paeoniflorin, and paeonol are simultaneously determined by UV detection at 210 nm for quantitative purposes.  相似文献   

16.
The research topics and the analytical strategies dealing with food proteins and peptides are summarized. Methods for the separation and purification of macromolecules of food concern by both high-performance liquid chromatography (HPLC) on conventional packings and perfusion HPLC are examined. Special attention is paid to novel methodologies such those based on multi-dimensional systems that comprise liquid-phase based protein separation, protein digestion and mass spectrometry (MS) analysis of food peptide and proteins. Recent applications of chromatography and MS-based techniques for the analysis of proteins and peptides in food are discussed.  相似文献   

17.
Analysis of pesticide residues in water and food matrices is an active research area closely related to food safety and environmental issues. In this aspect mass spectrometry (MS) coupled to gas chromatography (GC) and liquid chromatography (LC) has been increasingly used in the analysis of pesticide residues in water and food. The increasing interest in application of high‐resolution mass spectrometry with time‐of‐flight (TOF) and hybrid triple quadrupole TOF in pesticide analysis is due to its capability of performing both targeted and nontargeted analysis. This article discusses an overview of the application of GC‐TOF‐MS and LC‐TOF‐MS in water and food matrices.  相似文献   

18.
In the last decade, liquid chromatography coupled to (tandem) mass spectrometry (LC-MS(-MS)) has become a versatile technique with many routine applications in clinical and forensic toxicology. However, it is well-known that ionization in LC-MS(-MS) is prone to so-called matrix effects, i.e., alteration in response due to the presence of co-eluting compounds that may increase (ion enhancement) or reduce (ion suppression) ionization of the analyte. Since the first reports on such matrix effects, numerous papers have been published on this matter and the subject has been reviewed several times. However, none of the existing reviews has specifically addressed aspects of matrix effects of particular interest and relevance to clinical and forensic toxicology, for example matrix effects in methods for multi-analyte or systematic toxicological analysis or matrix effects in (alternative) matrices almost exclusively analyzed in clinical and forensic toxicology, for example meconium, hair, oral fluid, or decomposed samples in postmortem toxicology. This review article will therefore focus on these issues, critically discussing experiments and results of matrix effects in LC-MS(-MS) applications in clinical and forensic toxicology. Moreover, it provides guidance on performance of studies on matrix effects in LC-MS(-MS) procedures in systematic toxicological analysis and postmortem toxicology.  相似文献   

19.
The following review describes the development of mass spectrometry off-line and on-line coupled with liquid chromatography to the analysis of food proteins. It includes the significant results recently obtained in the field of milk, egg and cereal proteins. This paper also outlines the research carried out in the area of food protein hydrolysates, which are important components in foodstuffs due to their functional properties. Liquid chromatography and mass spectrometry have been particularly used for the characterization of food peptides and especially in dairy products.  相似文献   

20.
The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The direct coupling of MEKC with MS can be hazardous due to the effect of nonvolatile MEKC surfactants on MS performance, including the loss of analyte sensitivity and ion source contamination. The possibility of off-line coupling between MEKC and matrix-assisted laser desorption/ionization (MALDI)-MS remains to be investigated. Various approaches for on-line coupling MEKC with electrospray ionization (ESI)-MS, including the use of high-molecular-mass surfactant, an electrospray-chemical ionization (ES-CI) interface, a voltage switching and buffer renewal system, partial-filling micellar plug and anodically migrating micelles, are reviewed and evaluated. The use of an ES-CI interface is most promising for routine operation of on-line MEKC-MS under the influence of nonvolatile salts and surfactants. The use of a high-molecular-mass surfactants allows the formation of a micellar phase at very low surfactant concentrations and avoids the generation of a high level of background ions in the low m/z region. Alternatively, the application of a partial-filling micellar plug and anodically migrating micelles eliminate the introduction of MEKC micelles into the ESI-MS system. It is possible to directly transfer the conventional MEKC separations to partial-filling MEKC-ESI-MS and MEKC-ESI-MS using anodically migrating micelles without any instrument modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号