首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization and catalytic activity of chloroaluminate ionic liquid‐modified silica‐coated magnetic nanoparticles ([SiPrPy]AlCl4@MNPs) are described. The prepared magnetic nanocatalyst was characterized using Fourier transform infrared spectroscopy, elemental analysis, vibrating sample magnetometry, scanning and transmission electron microscopies, X‐ray diffraction and inductively coupled plasma analysis. The results showed that the ionic liquid had been successfully immobilized onto the magnetic support, and the resulting nanoparticles exhibited high catalytic activity for the synthesis of a diverse range of dihydropyrano[3,2‐b ]chromenediones via a one‐pot, three‐component and solvent‐free reaction of aromatic aldehydes, 1,3‐diones and kojic acid. This catalytic system also showed excellent activity in the selective synthesis of mono‐ and bis‐dihydropyrano[3,2‐b ]chromenediones from dialdehydes. The procedure gave the products in excellent yields and in very short reaction times. Moreover, the catalyst could be reused eight times without loss of its catalytic activity.  相似文献   

2.
A novel mesoporous silica‐nanotube‐supported 3‐4,5‐dihydroimidazol‐1‐yl‐propyltriethoxysilanedichloropalladium(II) complex was prepared and characterized. 3‐4,5‐Dihydroimidazol‐1‐yl‐propyltriethoxysilanedichloropalladium(II) and mesoporous silica‐supported 3‐4,5‐dihydroimidazol‐1‐yl‐propyltriethoxysilanedichloropalladium(II) were tested for catalytic activity for Heck coupling reactions between styrene and several aryl halides and Suzuki coupling reactions between phenylboronic acid and several aryl halides. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A novel nanocatalyst was developed based on covalent surface functionalization of MCM‐41 with polyethyleneimine (PEI) using [3‐(2,3‐Epoxypropoxy)propyl] trimethoxysilane (EPO) as a cross‐linker. Amine functional groups on the surface of MCM‐41 were then conjugated with iodododecane to render an amphiphilic property to the catalyst. Palladium (II) was finally immobilized onto the MCM‐41@PEI‐dodecane and the resulted MCM‐41@aPEI‐Pd nanocatalyst was characterized by FT‐IR, TEM, ICP‐AES and XPS. Our designed nanocatalyst with a distinguished core‐shell structure and Pd2+ ions as catalytic centers was explored as an efficient and recyclable catalyst for Heck and oxidative boron Heck coupling reactions. In Heck coupling reaction, the catalytic activity of MCM‐41@aPEI‐Pd in the presence of triethylamine as base led to very high yields and selectivity. Meanwhile, the MCM‐41@aPEI‐Pd as the first semi‐heterogeneous palladium catalyst was examined in the C‐4 regioselective arylation of coumarin via the direct C‐H activation and the moderate to excellent yields were obtained toward different functional groups. Leaching test indicated the high stability of palladium on the surface of MCM‐41@aPEI‐Pd as it could be recycled for several runs without significant loss of its catalytic activity.  相似文献   

4.
Uniform carbon nanospheres (UCS) with well‐controlled nano‐morphologies were fabricated by hydrothermal carbonization of sucrose in the presence of kayexalate. Highly dispersed and ultrafine palladium nanoparticles were supported on the UCS through a facile co‐reduction process with NaBH4 as reducing agent. The obtained Pd@UCS exhibited efficient catalytic activity for the Suzuki coupling reaction. Moreover, the as‐prepared catalyst could be recycled and reused at least five times without significant loss of its catalytic activity.  相似文献   

5.
Heterocyclic carbene‐Pd complex was anchored onto the mesoporous silica MCM‐41 which exhibits high catalytic activity in Heck reaction under phosphine free reaction conditions for the reaction of iodo/bromoarenes with olefinic compounds such as butyl acrylate, isopropyl acrylate and styrene. This catalytic system also showed high activity for Sonogashira coupling reaction of various aryl halides under copper, phosphine and solvent‐free reaction conditions. The air and thermally stable catalyst were reused several times without significant loss of its activity. High efficiency of the catalyst along with its recycling ability and the rather low Pd‐loading demonstrated in both Heck and Sonogashira coupling reactions are the merits of the presented catalyst system.  相似文献   

6.
The catalytic activities of three N‐methylimidazole‐based phosphine ligands in the Suzuki coupling reaction were tested using PdCl2 as the catalyst. The results showed all three phosphine ligands exhibited excellent activity towards the Suzuki reaction, and the catalytic activity decreased with increasing number of imidazole groups. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
An efficient catalytic system for Sonogashira–Hagihara‐type reactions displaying ligand acceleration in the copper‐catalyzed formation of C(sp2)? C(sp) bonds is described. The structure of the ligand plays a key role for the coupling efficiency. Various copper sources show excellent catalytic activity, even in sub‐mol % quantities. A wide variety of substituents is tolerated in the substrates. Mechanistic details have been revealed by kinetic measurements and DFT calculations.  相似文献   

8.
An interesting silica‐supported iron catalyst was successfully prepared and demonstrated as an efficient heterogeneous catalyst for cross‐coupling reactions of aryl halides. The as‐prepared nanocatalyst was well characterized and found to be highly efficient in Heck reaction under mild and sustainable conditions (water as solvent at 80 °C in short reaction time). Furthermore, the obtained catalyst was used as an efficient, inexpensive and green heterogeneous catalyst for Sonogashira cross‐coupling reactions of various aryl iodides and provided the corresponding products with moderate to good yields. This phosphine, copper and palladium‐free catalyst was simply recovered from the reaction mixture and recycled five times without substantial decrease in its catalytic activity.  相似文献   

9.
One‐pot multicomponent reactions are very demanding in synthetic organic chemistry. Here we report a new polystyrene‐supported cerium catalyst (PS‐Ce‐amtp) obtained via an easy two‐step procedure, which was thoroughly characterized using various techniques. PS‐Ce‐amtp catalyses the environmentally benign one‐pot multicomponent synthesis of spiro‐piperidine derivatives through the reaction of substituted aniline, cyclic active methylene compound and formaldehyde at room temperature. The catalyst also exhibits excellent catalytic activity in one‐pot synthesis of 1,4‐disubstituted 1,2,3‐triazoles via click reaction between in situ generated azides (derived from anilines and amines) and terminal alkynes. The catalyst can be recovered easily after reaction and reused five times without significant loss in its catalytic activity. The advantageous features of this catalyst are atom economy, operational simplicity, short reaction times, easy handling and high recycling efficiency.  相似文献   

10.
The catalytic activity of dimeric [Pd{C6H2(CH2CH2NH2)–(OMe)2,2,3}(μ‐Br)]2 and monomeric [Pd{C6H2(CH2CH2NH2)–(OMe)2,2,3}Br(PPh3)] complexes as efficient, stable and air‐ and moisture‐tolerant catalysts was investigated in the Suzuki, Stille and Hiyama cross‐coupling and homo‐coupling reactions of various aryl halides. Substituted biaryls were produced in excellent yields in short reaction times using catalytic amounts of these complexes. The monomeric complex was demonstrated to be more active than the corresponding dimeric catalyst for the cross‐coupling reaction of unreactive aryl bromides and chlorides. The combination of homogeneous metal catalysts and microwave irradiation gave higher yields of products in shorter reaction times. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The catalytic activity of ortho‐palladated [Pd{C6H2(CH2CH2NH2)‐(OMe)2,3,4}(m‐Br)]2, a complex of homoveratrylamine in the copper‐free Sonogashira coupling reaction has been investigated. This complex is a catalyst that is efficient, stable and non‐sensitive to air and moisture in the Sonogashira reaction. In this homogeneous catalytic system, various aryl halides were efficiently coupled with phenylacetylene in mostly moderate to good yields in N‐methylpyrrolidone at 100 °C under copper‐free conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Nanostructured palladium pyrophosphate (Na2PdP2O7) catalyst was synthesized and well characterized by using different techniques (TGA, XRD, SEM, TEM....). This nanocatalyst exhibited excellent catalytic activity in the synthesis of biaryl compounds via Suzuki‐Miyaura cross‐coupling to produce their corresponding products in good to excellent yields under mild conditions. The catalyst is recyclable and was recycled for four runs for the reaction of 4‐bromoacetophenone with phenylboronic acid without appreciable loss of its catalytic activity.  相似文献   

13.
A palladium‐based catalyst supported on acac‐functionalized silica was used as a heterogeneous catalyst for the Sonogashira cross‐coupling reaction of various aryl halides and phenylacetylene under copper‐ and phosphine‐free conditions. This catalytic system serves as an efficient and stable catalyst for this cross‐coupling reaction and allows easy separation and recycling of the catalyst. The catalyst could be recycled for five runs without appreciable loss of its catalytic activity. In addition, the reaction was carried out in water as a green solvent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Titanium was incorporated in ionic liquid based periodic mesoporous organosilica to prepare a nanostructured catalyst (Ti@PMO‐IL) with high activity. Procedure for the synthesis of Ti@PMO‐IL was followed according the simultaneous hydrolysis and condensation of alkylimidazolium ionic liquid, tetramethoxysilane (TMOS) and tetrabutylorthotitanate (TBOT) where a surfactant template was used together with a simple acid‐based catalytic aproach. N2 adsorption isotherm of the Ti@PMO‐IL was studied to measure its mean pore volume, pore size distribution and specific surface area. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was applied to identify the chemical bonds present in Ti@PMO‐IL. The morphology of this nanomaterial was investigated by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) image was used to study mesoporosity and structure order of the catalyst. The catalytic activity of Ti@PMO‐IL was then studied and found to be efficient and reusable to catalyze Hantzsch reaction.  相似文献   

15.
Graphene oxide was functionalized with benzimidazole for palladium immobilization. The resultant graphene–benzimidazole‐supported palladium composite (G‐BI‐Pd) was characterized using infrared and Raman spectroscopies, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. G‐BI‐Pd showed excellent catalytic activity and fast reaction kinetics in the aqueous‐phase Suzuki–Miyaura reaction of aryl iodides and bromides with phenylboronic acid under relatively mild conditions (5–25 min, 80 °C). The catalyst can be used several times without any significant loss of its catalytic activity.  相似文献   

16.
A ferrocene‐based ionic liquid (Fe‐IL) is used as a metal‐containing feedstock with a nitrogen‐enriched ionic liquid (N‐IL) as a compatible nitrogen content modulator to prepare a novel type of non‐precious‐metal–nitrogen–carbon (M‐N‐C) catalysts, which feature ordered mesoporous structure consisting of uniform iron oxide nanoparticles embedded into N‐enriched carbons. The catalyst Fe10@NOMC exhibits comparable catalytic activity but superior long‐term stability to 20 wt % Pt/C for ORR with four‐electron transfer pathway under alkaline conditions. Such outstanding catalytic performance is ascribed to the populated Fe (Fe3O4) and N (N2) active sites with synergetic chemical coupling as well as the ordered mesoporous structure and high surface area endowed by both the versatile precursors and the synthetic strategy, which also open new avenues for the development of M‐N‐C catalytic materials.  相似文献   

17.
A novel palladium(II) carboxymethylcellulose (CMC‐PdII) was prepared by direct metathesis from sodium carboxymethylcellulose and PdCl2 in aqueous solution. Its catalytic activities were explored for Heck–Matsuda reactions of aryldiazonium tetrafluoroborate with olefins, and Suzuki–Miyaura couplings of aryldiazonium tetrafluoroborate with arylboronic acid. Both reactions proceeded at room temperature in water or aqueous ethanol media without the presence of any ligand or base, to provide the corresponding cross‐coupling products in good to excellent yields under atmospheric conditions. The CMC‐PdII and carboxymethylcellulose‐supported palladium nanoparticles (CMC‐Pd0) formed in situ in the reactions were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, inductively coupled plasma atomic emission spectrometry, and scanning and transmission electron microscopies. The homogeneous nature of the CMC‐Pd0 catalyst was confirmed via Hg(0) and CS2 poisoning tests. Moreover, the CMC‐Pd0 catalyst could be conveniently recovered by simple filtration and reused for at least ten cycles in Suzuki–Miyaura reactions without apparently losing its catalytic activity. The catalytic system not only overcomes the basic drawbacks of homogeneous catalyst recovery and reuse but also avoids the need to fabricate palladium nanoparticles in advance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A novel bio‐nanocomposite nanocatalyst with highly dispersed particles is synthesized through covalent functionalization of chitosan biopolymer by the multicomponent reaction (MCR) strategy. Surface functionalization of chitosan through MCR is led to the grafting of carboxamide type ligands with a high affinity toward complexation with copper nanoparticles. The catalytic activity of the synthesized catalyst was explored in various transformations such as A3 coupling and click reactions in water. Reusability and non‐hazardous nature of the catalyst, mild reaction conditions, operational simplicity, high yielding, and using water as a solvent are the main advantages of this catalytic protocol.  相似文献   

19.
The synthesis, characterization and catalytic activity of a Cu(II) complex derived from 2‐oxoquinoline‐3‐carbaldehyde Schiff base supported on amino‐functionalized silica are reported. 3‐(1H‐Benzo[d]imidazol‐2‐yl)quinolines containing piperidine, morpholine and phenylpiperazine skeletons at the C‐2 position were formed in good to excellent yields via the one‐pot reaction of 2‐chloroquinoline‐3‐carbaldehyde, benzene‐1,2‐diamines and secondary amines in the presence of the nanocatalyst under mild conditions. Moreover, the nanocatalyst was found to be recyclable for up to seven runs without significant loss of activity. Also, a series of 2H‐indazoles were synthesized by the catalytic condensation of 2‐bromobenzaldehyde, sodium azide and primary amines.  相似文献   

20.
The rapid development of nanomaterials, particularly advanced hybrid nanoparticles, has made new opportunities for the design and fabrication of high‐performance metal‐based catalysts. However, generating metal nanoparticles of desired size without aggregation is an important challenge for enhancing the catalytic activity of metal nanoparticles supported in the host matrix. In this work, a hybrid nanoporous material, namely Pd nanoparticles@N‐heterocyclic carbene@ZIF‐8, with a high internal surface area was successfully prepared using a dispersed anionic sulfonated N‐heterocyclic carbene–Pd(II) precursor inside the cavities of zeolitic imidazolate framework (ZIF‐8) using an impregnation approach followed by reduction with NaBH4. The anionic sulfonated N‐heterocyclic carbene was found to be a superb ligand for the stabilization of Pd nanoparticles in the pores of ZIF‐8. The resulting system was applied to the Mizoroki–Heck cross‐coupling reaction, in which the catalyst showed high catalytic activity under mild reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号