首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐diazo‐bridged azoles were synthesized based on oxidative coupling of N‐aminoazoles. Incorporation of extended catenated nitrogen‐atom chains with nitro groups led to compounds with favorable functional compatibilities. This combination gives rise to a series of high‐density energetic materials (HEDMs) with high heats of formation, enhanced densities, positive oxygen balances, and good detonation properties while retaining excellent thermal stabilities and relatively low impact sensitivities. Calculated and experimental studies showed the delicate balance between the length of the nitrogen atom chain, energetic performance, and inherent stability, thus, providing a promising strategy for designing advanced energetic materials.  相似文献   

2.
1,3‐Dichloro‐2‐nitro‐2‐azapropane is an excellent precursor to dense energetic functionalized dipyrazolyl‐N‐nitromethanamines. This new family of energetic compounds was fully characterized by using 1H, 13C, and 15N NMR and IR spectroscopy, differential scanning calorimetry, elemental analysis, and impact sensitivity tests. Additionally, single‐crystal X‐ray structuring was done for 3 and 5? CH3CN, which gave insight into structural characteristics. The experimentally determined densities of 2 – 9 fall between 1.69 and 1.90 g cm?3. Heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 programs, respectively. The influence of different energetic moieties on the structural and energetic properties was established theoretically.  相似文献   

3.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

4.
5.
Through the use of a fully C/N‐functionalized imidazole‐based anion, it was possible to prepare nitrogen‐ and oxygen‐rich energetic salts. When N,N‐dinitramino imidazole was paired with nitrogen‐rich bases, versatile ionic derivatives were prepared and fully characterized by IR, and 1H, and 13C NMR spectroscopy and elemental analysis. Both experimental and theoretical evaluations show promising properties for these energetic compounds, such as high density, positive heats of formation, good oxygen balance, and acceptable stabilities. The energetic salts exhibit promising energetic performance comparable to the benchmark explosive RDX (1,3,5‐trinitrotriazacyclohexane).  相似文献   

6.
A new class of N,N′‐ethylene‐bridged bis(nitropyrazoles) was synthesized and fully characterized. The highly efficient formation of the N,N′‐ethylene bridge was accomplished using dibromoethane and ammonium or potassium pyrazolate. Further functional‐group transformations of diaminobis(pyrazole) and dichlorobis(pyrazole) gave rise to diversified derivatives, including dinitramino‐, diazido‐ and hexanitrobis(pyrazole). Single‐crystal X‐ray diffractions were obtained for hexanitro and diazido derivatives to illustrate the structural characteristics. Heats of formation and detonation performance were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. Because of the different functionalized groups, the impact and friction sensitivities of these new compounds range from insensitive to sensitive. Among them, the hexanitro derivative displays the most promising overall energetic properties (density (ρ)=1.84 g cm?3; decomposition temperature (Td)=250 °C; detonation pressure (P)=34.1 GPa; detonation velocity (vD)=8759 m s?1; impact sensitivity (IS)=25 J; friction sensitivity (FS)=160 N), which is competitive with those of 1,3,5‐trinitrotriazacyclohexane (ρ=1.80 g cm?3; Td=205 °C; P=35.0 GPa; vD=8762 m s?1; IS=7 J; FS=120 N).  相似文献   

7.
New derivatives of 1,1‐diamino‐2, 2‐dinitroethene (FOX‐7) are reported. These highly oxygen‐ and nitrogen‐rich compounds were fully characterized using IR and multinuclear NMR spectroscopy, elemental analysis (EA), and differential scanning calorimetry (DSC). X‐ray structure determination of (E)‐1,2‐bis{(E)‐2‐chloro‐1‐(chloroimino)‐2,2‐dinitroethyl}diazene) ( 10 ), N1, N2‐dichloro‐1, 2‐diazenedicarboximidamide ( 11 ), and (E,E)‐N,N′‐1,2‐ethanediylidenebis(2, 2‐dinitro‐2‐chloro‐ethanamine) ( 12 ) was helpful in their characterization. Heats of formation (HOF) were calculated (Gaussian 03) and combined with experimental densities to estimate the detonation velocities (D) and pressures (P) of the high‐energy‐density materials (HEDMs) (EXPLO5, v6.01). The compounds exhibit good thermal stability, high density, positive HOF, acceptable oxygen balances, and excellent detonation properties, which often are superior to that of 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX).  相似文献   

8.
9.
A series of nitroguanidine‐fused bicyclic guanidinium energetic salts paired with inorganic energetic anions, mono‐ and di‐tetrazolate anions were synthesized through simple metathesis reactions of 2‐iminium‐5‐nitriminooctahydroimidazo[4,5‐d]imidazole chloride and sulfate with the corresponding silver and barium salts, respectively, in aqueous solution. Key physical properties, such as melting point, thermal stability, and density were measured. The relationship between the structures of the salts and these properties was determined. The salts exhibit thermal stability and density (>1.60 g cm?3) that are comparable to currently used explosives The structures of the nitrate salt 1 and the dinitrocyanomethanide salt 4 were confirmed by single‐crystal X‐ray analysis. Densities, heats of formation, detonation pressures and velocities, and specific impulses were calculated. All of the salts possess positive calculated heats of formation and most of them exhibit promising energetic performance that is comparable with those of 1,3,5‐trinitrobenzene (TNT), 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB), and cyclotrimethylenetrinitramine (RDX). The effect of the fused bicycle 2‐iminium‐5‐nitriminooctahydroimidazo[4,5‐d]imidazole on these physicochemical properties was examined and discussed.  相似文献   

10.
3,4‐Diaminofurazan was conveniently converted into energetic salts of 3,4‐dinitraminofurazan that were paired with nitrogen‐rich cations in fewer than three steps. Seven energetic salts were prepared and fully characterized by multinuclear (1H, 13C) NMR and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analysis. In addition, the structures of the ammonium salt ( 2 ), hydrazinium salt ( 4 ), hydroxylammonium salt ( 5 ), aminoguanidinium salt ( 7 ), diaminoguanidinium salt ( 8 ) and triaminoguanidinium salt of 3,4‐dinitraminofurazan ( 9 ) were further confirmed by single‐crystal X‐ray diffraction. The densities of these salts were between 1.673 ( 8 ) and 1.791 g cm?3 ( 5 ), whilst their oxygen balances were between ?48.20 % ( 9 ) and ?6.25 % ( 5 ). These salts showed high thermal stabilities, with decomposition temperatures between 179 ( 5 ) and 283 °C ( 6 ). Their sensitivities towards impact and friction were measured by BAM equipment to be between <1 J ( 9 ) and >40 J ( 6 – 8 ) and 64 N ( 9 ) and >360 N ( 6 ), respectively. The detonation performance of these compounds, which was calculated by using the EXPLO5 program, revealed detonation pressures of between 28.0 ( 6 ) and 40.5 GPa ( 5 ) and detonation velocities of between 8404 ( 6 ) and 9407 m s?1 ( 5 ).  相似文献   

11.
Insensitive energetic salts : A series of furazan‐functionalized tetrazolate‐based energetic salts (see figure) were synthesized and characterized. All of the salts exhibit excellent thermal stabilities and high positive heats of formation.

  相似文献   


12.
3,6‐Dinitropyrazolo[4,3‐c]pyrazole was prepared using an efficient modified process. With selected cations, ten nitrogen‐rich energetic salts and three metal salts were synthesized in high yield based on the 3,6‐dinitropyrazolo[4,3‐c]pyrazolate anion. These compounds were fully characterized by IR and multinuclear NMR spectroscopies, as well as elemental analyses. The structures of the neutral compounds 4 and its salt 16 were confirmed by single‐crystal X‐ray diffraction showing extensive hydrogen‐bonding interactions. The neutral pyrazole precursor and its salts are remarkably thermally stable. Based on the calculated heats of formation and measured densities, detonation pressures (22.5–35.4 GPa) and velocities (7948–9005 m s?1) were determined, and they compare favorably with those of TNT and RDX. Their impact and friction sensitivities range from 12 to >40 J and 80 to 360 N, respectively. These properties make them competitive as insensitive and thermally stable high‐energy density materials.  相似文献   

13.
Salts generated from linked 1,2,4‐oxadiazole/1,2,5‐oxadiazole precursors exhibit good to excellent thermal stability, density, and, in some cases, energetic performance. The design of these compounds was based on the assumption that by the combination of varying oxadiazole rings, it would be possible to profit from the positive aspects of each of the components. All of the new compounds were fully characterized by elemental analysis, IR spectroscopy, 1H, 13C, and (in some cases) 15N NMR spectroscopy, and thermal analysis (DSC). The structures of 2 – 3 and 5 ‐ 1 ?5 H2O were confirmed by single‐crystal X‐ray analysis. Theoretical performance calculations were carried out by using Gaussian 03 (Revision D.01). Compound 2 ‐ 3 , with its good density (1.85 g cm?3), acceptable sensitivity (14 J, 160 N), and superior detonation pressure (37.4 GPa) and velocity (9046 m s?1), exhibits performance properties superior to those of 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX).  相似文献   

14.
Two ammonia–(dinitramido)boranes were synthesized by the reaction of dinitroamine with ammonia–borane. These compounds are the first reported examples of (dinitramido)boranes. Ammonia–mono(dinitramido)borane is a perfectly oxygen‐balanced high‐energy‐density material (HEDM) composed of an ammonia–BH2 fuel group and a strongly oxidizing dinitramido ligand. Although it is thermally not stable enough for practical applications, its predicted specific impulse as a solid rocket propellant would be 333 s. Its predicted performance as an explosive matches that of pentaerythtritol tetranitrate (PETN) and significantly exceeds that of trinitrotoluene (TNT). Its structure was established by X‐ray crystallography and vibrational and multinuclear NMR spectroscopy. Additionally, the over‐oxidized ammoniabis(dinitramido)borane was detected by NMR spectroscopy.  相似文献   

15.
A new family of energetic compounds, nitropyrazoles bearing a trinitromethyl moiety at the nitrogen atom of the heterocycle, was designed. The desirable high‐energy dense oxidizers 3,4‐dinitro‐ and 3,5‐dinitro‐1‐(trinitromethyl)pyrazoles were synthesized in good yields by destructive nitration of the corresponding 1‐acetonylpyrazoles. All of the prepared compounds were fully characterized by multinuclear NMR and IR spectroscopy, as well as by elemental analysis. Single‐crystal X‐ray diffraction studies show remarkably high density. Impact sensitivity tests and thermal stability measurements were also performed. All of the pyrazoles possess positive calculated heats of formation and exhibit promising energetic performance that is the range of 1,3,5‐trinitroperhydro‐1,3,5‐triazine and pentaerythritol tetranitrate. The new pyrazoles exhibit positive oxygen balance and are promising candidates for new environmentally benign energetic materials.  相似文献   

16.
17.
Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen‐containing mesoporous carbon with high SSA (1390 m2 g?1), a suitable pore size distribution (1.5–8.1 nm), and a nitrogen content of 4.7 wt % through a facile one‐step self‐assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium–sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g?1 at 1 A g?1 and an excellent rate capability (180 F g?1, 10 A g?1). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium–sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g?1 at 837.5 mA g?1 and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles.  相似文献   

18.
The amino, azido, nitro, and nitrogen‐rich azole substituted derivatives of 1H‐benzotriazole have been synthesized for energetic material applications. The synthesized compounds were fully characterized by 1H and 13C NMR spectroscopy, IR, MS, and elemental analysis. 5‐Chloro‐4‐nitro‐1H‐benzo[1,2,3]triazole ( 2 ) and 5‐azido‐4,6‐dinitro‐1H‐benzo[1,2,3]triazole ( 7 ) crystallize in the Pca21 (orthorhombic) and P21/c (monoclinic) space group, respectively, as determined by single‐crystal X‐ray diffraction. Their densities are 1.71 and 1.77 g cm?3, respectively. The calculated densities of the other compounds range between 1.61 and 1.98 g cm?3. The detonation velocity (D) values calculated for these synthesized compounds range from 5.45 to 8.06 km s?1, and the detonation pressure (P) ranges from 12.35 to 28 GPa.  相似文献   

19.
20.
N‐Nitramino/N‐oxyl functionalization strategies were employed to investigate structure–property relationships of energetic materials. Based on single‐crystal diffraction data, π–π stacking of pyrazole backbones can be tailored effectively by energetic functionalities, thereby resulting in diversified energetic compounds. Among them, hydroxylammonium 4‐amino‐3,5‐dinitro‐1H‐pyrazol‐1‐olate and dipotassium N,N′‐(3,5‐dinitro‐1H‐pyrazol‐1,4‐diyl)dinitramidate, with unique face‐to‐face π–π stacking, can be potentially used as a high‐performance explosive and an energetic oxidizer, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号