首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of sulfur chelated dormant ruthenium olefin metathesis catalysts is presented. The catalysts prepared were shown to possess the uncommon cis-dichloro arrangement and were mostly inactive at room temperature. By systematically modifying the size of the substituent groups at the chelating sulfur atom, catalyst activity at different temperatures was significantly affected; more bulky substituents fomented activity at lower temperatures. The catalysts were also shown to be stable in solution and retained their catalytic activity even after being exposed to air for two weeks.  相似文献   

2.
Kinetic studies on ring-closing metathesis of unhindered and hindered substrates using phosphine and N-heterocyclic carbene (NHC)-containing ruthenium-indenylidene complexes (first and second generation precatalysts, respectively) have been carried out. These studies reveal an appealing difference, between the phosphine and NHC-containing catalysts, associated with a distinctive rate-determining step in the reaction mechanism. These catalysts have been compared with the benzylidene generation catalysts and their respective representative substrates. Finally, the reaction scope of the two most interesting precatalysts, complexes that contain tricyclohexylphosphine and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (SIMes), has been investigated for the ring-closing and enyne metathesis for a large range of olefins. Owing to their high thermal stability, the SIMes-based indenylidene complexes were more efficient than their benzylidene analogues in the ring-closing metathesis of tetrasubstituted dienes. Importantly, none of the indenylidene precatalysts were found to be the most efficient for all of the substrates, indeed, a complementary complex-to-substrate activity relationship was observed.  相似文献   

3.
In asymmetric olefin metathesis reactions, the addition of halide additives is often required to augment enantioselectivities, despite the fact that the additives result in catalysts with diminished reactivities. The preparation of new chiral Ru-based catalysts was accomplished by exploiting previously reported mechanistic studies. The catalysts possess a high level of reactivity and successfully induce high levels of asymmetry in desymmetrization reactions without the use of halide additives.  相似文献   

4.
5.
The data reported in this paper demonstrate that great care must be taken when choosing an appropriate catalyst for a given metathesis reaction. First-generation catalysts were found to be useful in the metathesis of sterically unhindered substrates. Second-generation catalysts (under optimised conditions) showed good to excellent activities toward sterically hindered and electron-withdrawing group (EWG)-substituted alkenes that do not react using the first-generation complexes. A strong temperature effect was noted on all of the reactions tested. Interestingly, attempts to force a reaction by increasing the catalyst loading were much less effective. Therefore, when possible, it is suggested that metathesis transformations should be carried out with a second-generation catalyst at 70 degrees C in toluene. However, different second-generation catalysts proved to be optimal for different applications and no single catalyst outperformed all others in all cases. Nevertheless, some empirical rules can be deduced from the model experiments, providing preliminary hints for the selection of the optimal catalysts.  相似文献   

6.
7.
A continuous survey across structures, made over the past decades, has led to the development of highly active olefin metathesis catalysts for sophisticated synthetic tasks and for polymer technology. In this paper, our efforts toward novel and improved ruthenium complexes with even better performance in olefin metathesis are described. Oxygen ether derivatives 3, pioneered by Hoveyda, exhibit high activity and possess excellent functional group tolerance. We have successfully fine-tuned catalyst 3b to increase its activity and applicability by the introduction of electron-withdrawing groups to diminish the donor properties of the oxygen atom. As a result, the stable and easily accessible nitro-substituted catalyst 6 has found a number of successful applications in various research and industrial laboratories. We were intrigued by the possibility to further fine-tune the Hoveyda-type catalysts by combining two activating effects-steric and electronic-in a single catalyst. This was possible to achieve in so-called scorpio carbenes, which are currently under investigation in our laboratory. These modifications can be used not only to control the catalyst activity, but also to alter its physical-chemical properties, such as solubility in a given medium or an affinity to silica gel. An example of immobilization strategy based on this concept is presented.  相似文献   

8.
According to popular belief, oxygen and water are the natural enemies of organometallic reactions and therefore must be excluded rigorously from the reaction vessel. This belief is founded in the case of the highly reactive nucleophilic metal alkylidene complexes that were used in early catalytic olefin metathesis. However, owing to the high stability of the ruthenium carbene complexes introduced by Grubbs, metathesis in water has become reality.  相似文献   

9.
The electrochemical reduction of WCl6 results in the formation of an active olefin (alkene) metathesis catalyst. The application of the WCl6–e?–Al–CH2Cl2 catalyst system to cross‐metathesis reactions of non‐functionalized acyclic olefins is reported. Undesirable reactions, such as double‐bond shift isomerization and subsequent metathesis, were not observed in these reactions. Cross‐metathesis of 7‐tetradecene with an equimolar amount of 4‐octene generated the desired cross‐product, 4‐undecene, in good yield. The reaction of 7‐tetradecene with 2‐octene, catalyzed by electrochemically reduced tungsten hexachloride, resulted in both self‐ and cross‐metathesis products. The cross‐metathesis products, 2‐nonene and 6‐tridecene, were formed in larger amounts than the self‐metathesis products of 2‐octene. The optimum catalyst/olefin ratio and reaction time were found to be 1 : 60 and 24 h, respectively. The cross‐metathesis of symmetrical olefins with α‐olefins was also studied under the predetermined conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The mechanism of the trans to cis isomerization in Ru complexes with a chelating alkylidene group has been investigated by using a combined theoretical and experimental approach. Static DFT calculations suggest that a concerted single‐step mechanism is slightly favored over a multistep mechanism, which would require dissociation of one of the ligands from the Ru center. This hypothesis is supported by analysis of the experimental kinetics of isomerization, as followed by 1H NMR spectroscopy. DFT molecular dynamics simulations revealed that the variation of geometrical parameters around the Ru center in the concerted mechanism is highly uncorrelated; the mechanism actually begins with the transformation of the square‐pyramidal trans isomer, with the Ru?CHR bond in the apical position, into a transition state that resembles a metastable square pyramidal complex with a Cl atom in the apical position. This high‐energy structure collapses into the cis isomer. Then, the influence of the N‐heterocyclic carbene ligand, the halogen, and the chelating alkylidene group on the relative stability of the cis and trans isomers, as well as on the energy barrier separating them, was investigated with static calculations. Finally, we investigated the interconversion between cis and trans isomers of the species involved in the catalytic cycle of olefin metathesis; we characterized an unprecedented square‐pyramidal metallacycle with the N‐heterocyclic carbene ligand in the apical position. Our analysis, which is relevant to the exchange of equatorial ligands in other square pyramidal complexes, presents evidence for a remarkable flexibility well beyond the simple cistrans isomerization of these Ru complexes.  相似文献   

12.
Ruthenium-catalyzed olefin metathesis reactions represent an attractive and powerful transformation for the formation of new carbon-carbon double bonds. This area is now quite familiar to most chemists as numerous catalysts are available that enable a plethora of olefin metathesis reactions. Nevertheless, with the exception of uses in polymerization reactions, only a limited number of industrial processes use olefin metathesis. This is mainly due to difficulties associated with removing ruthenium from the final products. In this context, a number of studies have been carried out to develop procedures for the removal of the catalyst or the products of catalyst decomposition, however, none are universally attractive so far. This situation has resulted in tremendous activity in the area dealing with supported or tagged versions of homogeneous catalysts. This Review summarizes the numerous studies focused on developing cleaner ruthenium-catalyzed metathesis processes.  相似文献   

13.
The cross‐metathesis of erucic acid, (CH3(CH2)7CH?CH(CH2)11COOH), with an excess of 2‐octene in the presence of an electrochemically produced tungsten‐based catalyst has been studied. Cross‐ and self‐hydrocarbon products, viz. 2‐undecene (C11), 6‐dodecene (C12) and 6‐pentadecene (C15), were detected. The influence of several parameters, such as the 2‐octene/erucic acid and 2‐octene/catalyst ratios and the reaction time, on the yield of the cross‐metathesis product, 6‐pentadecene, was studied. The cross‐metathesis of functionalized olefins in the presence of an Al–e?–WCl6–CH2Cl2 system has not been reported in the literature so far. The cross‐metathesis products in the presence of this catalyst system can be obtained with high yield and high specificity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The synthesis and characterization of two new ruthenium indenylidene complexes [RuCl(2)(SIPr)(Py)(Ind)] 6 and [RuCl(2)(SIPr)(3-BrPy)(Ind)] 7 featuring the sterically demanding N-heterocyclic carbene 1,3-bis(2,6-di isopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr) are reported. Remarkable activity was observed with these complexes in ring closing, enyne, and cross metathesis of olefins at low catalyst loadings. The performance of SIPr-bearing complexes 6 and 7 as well as [RuCl(2)(SIPr)(PCy(3))(Ind)] 5 in ring opening metathesis polymerization is also disclosed. This work highlights the enormous influence of the neutral "spectator" ligands on catalyst activity and stability.  相似文献   

15.
Ruthenium- and rhodium-based catalysts can be designed and finely tuned to some extent so as to mediate either carbene transfer to olefins (e.g., olefin cyclopropanation) or olefin metathesis. The different outcome of the reactions can be quite simply predicted based on either the ability or the absence of ability of the metal center to coordinate both the carbene and the olefin. Several available coordination sites at the metal center are favorable for metathesis to the prejudice of olefin cyclopropanation. Based on the report presented at the conference “Organometallic Chemistry on the Eve of the 21st Century,” May 19–23, 1998, Moscow. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1219–1224, July, 1999.  相似文献   

16.
A series of ruthenium-based olefin metathesis catalysts coordinated with unsymmetrical N-heterocyclic carbene (NHC) ligands has been prepared and fully characterized. These complexes are readily accessible in one or two steps from commercially available [(PCy(3))(2)Cl(2)Ru==CHPh]. All of the complexes reported herein promote the ring-closing of diethyldiallyl and diethylallylmethallyl malonate, the ring-opening metathesis polymerization of 1,5-cyclooctadiene, and the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, in some cases surpassing in efficiency the existing second-generation catalysts. Especially in the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, all new catalysts demonstrate similar or higher activity than the second-generation ruthenium catalysts and, most importantly, afford improved E/Z ratios of the desired cross-product at conversion above 60 %. The influence of the unsymmetrical NHC ligands on the initiation rate and the activation parameters for the irreversible reaction of these ruthenium complexes with butyl vinyl ether were also studied. Finally, the synthesis of the related chlorodicarbonyl(carbene) rhodium(I) complexes allowed for the study of the electronic properties of the new unsymmetrical NHC ligands that are discussed in detail.  相似文献   

17.
18.
A Grubbs‐Hoveyda pre‐catalyst having a trimeric resting state based on 2,4,6‐trichloro‐1,3,5‐triazine was synthesized and the complex was characterized by NMR, HRMS and elemental analysis. The activity of this complex for ring‐closing metathesis (RCM) was investigated. The catalytic system possesses high catalytic activity for many different olefin substrates.  相似文献   

19.
The NMR conformational study of three asymmetric phenylindenylidene ruthenium complexes 4.1–4.3, is presented. Complete 1H and 13C assignments could be obtained for 4.1–4.3 in benzene solution from multiple 2D homonuclear and heteronuclear NMR techniques. Our NMR analysis shows that each complex exists as a 55:45 mixture of two rotational isomers in slow exchange on the NMR chemical shift timescale. They are shown to be related by a 180° flip of the indenylidene ligand along the Ru?CR bond. Both rotational isomers can be discriminated by means of NOEs contacts between the various ligands coordinating to the Ru. By matching these stereospecific assignments to the chemical shift, a chemical shift based fingerprint of the isomers that may allow straightforward assignment of future asymmetric phenylindenylidene ruthenium complexes is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号