首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C?N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation‐sensitive examples. Compared to many other alcohol‐based amine alkylation methods, where a stoichiometric amount of base is required, our Cr‐based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.  相似文献   

2.
Imines are observed frequently in ruthenium‐catalyzed N‐alkylation of amines with alcohols. Herein, nitrogen–phosphine functionalized carbene ligands were developed and used in ruthenium‐catalyzed N‐alkylation to explore the mechanism of imine formation. The results showed that strongly electron‐donating ligands were beneficial for imine formation and alcohol dehydrogenation to generate acid. In addition, with an increase of electron density of nitrogen atom in substituted amines, the yield of imines in N‐alkylation was improved. At the same time, with electron‐rich imines as substrates, the transfer hydrogenation of imines became difficult. It is suggested that strongly electron‐donating ligands and substrates caused an increase of electron density on the ruthenium center, which resulted in the elimination of hydrogen atoms in active species [LRuH2] as hydrogen gas rather than transfer onto the imine coordinated with the ruthenium center.  相似文献   

3.
A general and benign iron‐catalyzed α‐alkylation reaction of ketones with primary alcohols has been developed. The key to success of the reaction is the use of a Knölker‐type complex as catalyst (2 mol %) in the presence of Cs2CO3 as base (10 mol %) under hydrogen‐borrowing conditions. Using 2‐aminobenzyl alcohol as alkylation reagent allows for the “green” synthesis of quinoline derivatives.  相似文献   

4.
A borrowing‐hydrogen reaction between amines and alcohols is an atom‐economic way to prepare alkylamines, ideally with water as the sole byproduct. Herein, nickel catalysts are used for direct N‐alkylation of hydrazides and arylamines using racemic alcohols. Moreover, a nickel catalyst of (S )‐binapine was used for an asymmetric N‐alkylation of benzohydrazide with racemic benzylic alcohols.  相似文献   

5.
The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C−N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation-sensitive examples. Compared to many other alcohol-based amine alkylation methods, where a stoichiometric amount of base is required, our Cr-based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.  相似文献   

6.
Possibly because homogeneous palladium catalysts are not typical borrowing hydrogen catalysts and ligands are thus ineffective in catalyst activation under conventional anaerobic conditions, they had not been used in the N‐alkylation reactions of amines/amides with alcohols in the past. By employing the aerobic relay race methodology with Pd‐catalyzed aerobic alcohol oxidation being a more effective protocol for alcohol activation, ligand‐free homogeneous palladiums are successfully used as active catalysts in the dehydrative N‐alkylation reactions, giving high yields and selectivities of the alkylated amides and amines. Mechanistic studies implied that the reaction most probably proceeds via the novel relay race mechanism we recently discovered and proposed.  相似文献   

7.
Transition‐metal‐catalyzed C‐alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by‐product, thus making the BH process atom‐economical and environmentally benign. Diverse homogeneous and heterogeneous transition‐metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition‐metal‐catalyzed BH α‐alkylation of ketones, and β‐alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C?C bond formation is included.  相似文献   

8.
The N‐alkylation of ammonia (or its surrogates, such as urea, NH4HCO3, and (NH4)2CO3) and amines with alcohols, including primary and secondary alcohols, was efficiently promoted under anaerobic conditions by the easily prepared and inexpensive supported ruthenium hydroxide catalyst Ru(OH)x/TiO2. Various types of symmetrically and unsymmetrically substituted “tertiary” amines could be synthesized by the N‐alkylation of ammonia (or its surrogates) and amines with “primary” alcohols. On the other hand, the N‐alkylation of ammonia surrogates (i.e., urea and NH4HCO3) with “secondary” alcohols selectively produced the corresponding symmetrically substituted “secondary” amines, even in the presence of excess amounts of alcohols, which is likely due to the steric hindrance of the secondary alcohols and/or secondary amines produced. Under aerobic conditions, nitriles could be synthesized directly from alcohols and ammonia surrogates. The observed catalysis for the present N‐alkylation reactions was intrinsically heterogeneous, and the retrieved catalyst could be reused without any significant loss of catalytic performance. The present catalytic transformation would proceed through consecutive N‐alkylation reactions, in which alcohols act as alkylating reagents. On the basis of deuterium‐labeling experiments, the formation of the ruthenium dihydride species is suggested during the N‐alkylation reactions.  相似文献   

9.
The N‐alkylation of amines or ammonia with alcohols is a valuable route for the synthesis of N‐alkyl amines. However, as a potentially clean and economic choice for N‐alkyl amine synthesis, non‐noble metal catalysts with high activity and good selectivity are rarely reported. Normally, they are severely limited due to low activity and poor generality. Herein, a simple NiCuFeOx catalyst was designed and prepared for the N‐alkylation of ammonia or amines with alcohol or primary amines. N‐alkyl amines with various structures were successfully synthesized in moderate to excellent yields in the absence of organic ligands and bases. Typically, primary amines could be efficiently transformed into secondary amines and N‐heterocyclic compounds, and secondary amines could be N‐alkylated to synthesize tertiary amines. Note that primary and secondary amines could be produced through a one‐pot reaction of ammonia and alcohols. In addition to excellent catalytic performance, the catalyst itself possesses outstanding superiority, that is, it is air and moisture stable. Moreover, the magnetic property of this catalyst makes it easily separable from the reaction mixture and it could be recovered and reused for several runs without obvious deactivation.  相似文献   

10.
A novel family of iridium catalysts stabilised by P,N‐ligands have been introduced. The ligands are based on imidazo[1,5‐b]pyridazin‐7‐amines and can be synthesised with a broad variety of substitution patterns. The catalysts were synthesised quantitatively from the protonated ligands and a commercially available iridium precursor. The catalysts mediate the alkylation of amines by alcohols under mild conditions (70 °C). In addition, the synthesis of quinolines from secondary or primary alcohols and amino alcohols is reported. This sustainable synthesis proceeds through the liberation of two equivalents of water and two equivalents of dihydrogen. The investigations indicate that catalysts suitable for hydrogen autotransfer or borrowing hydrogen chemistry might also be suitable for acceptor‐less dehydrogenative condensation reactions.  相似文献   

11.
Recent progress on the CeO2 catalyzed synthesis of organic carbonates, ureas, and carbamates from CO2+alcohols, CO2+amines, and CO2+alcohols+amines, respectively, is reviewed. The reactions of CO2 with alcohols and amines are reversible ones and the degree of the equilibrium limitation of the synthesis reactions is strongly dependent on the properties of alcohols and amines as the substrates. When the equilibrium limitation of the reaction is serious, the equilibrium conversion of the substrate and the yield of the target product is very low, therefore, the shift of the equilibrium reaction to the product side by the removal of H2O is essential in order to get the target product in high yield. One of the effective method of the H2O removal from the related reaction systems is the combination with the hydration of 2‐cyanopyridine to 2‐picolinamide, which is also catalyzed by CeO2.  相似文献   

12.
New methodology for the alkylation of amines is an intriguing issue in both academia and industry. Recently, several groups reported the metal‐free B(C6F5)3‐catalyzed N‐alkylation of amines, but the mechanistic details of these important reactions are unclear. Herein, a computational study was performed to elucidate the mechanism of the N‐alkylation of amines with formic acid catalyzed by the Lewis acid B(C6F5)3 in the presence of hydrosilane. We found that the reaction started with the activation of formic acid through a novel model. Then, the high electrophilicity of the C center of the formic acid unit and the nucleophilic character of the amine resulted in a C?N coupling reaction. Finally, two sequential silyl‐group and H? transfer steps occurred to generate the final product. Upon comparing the reaction barrier and the hydrogenation of indole, our mechanism is more favorable than that proposed by the group of Yu and Fu.  相似文献   

13.
A practical method for the synthesis of α‐chiral amines by alkylation of amines with alcohols in the absence of any transition‐metal catalysts has been developed. Under the co‐catalysis of a ketone and NaOH, racemic secondary alcohols reacted with Ellman's chiral tert‐butanesulfinamide by a hydrogen autotransfer process to afford chiral amines with high diastereoselectivities (up to >99:1). Broad substrate scope and up to a 10 gram scale production of chiral amines were demonstrated. The method was applied to the synthesis of chiral deuterium‐labelled amines with high deuterium incorporation and optical purity, including examples of chiral deuterated drugs. The configuration of amine products is found to be determined solely by the configuration of the chiral tert‐butanesulfinamide regardless of that of alcohols, and this is corroborated by DFT calculations. Further mechanistic studies showed that the reaction is initiated by the ketone catalyst and involves a transition state similar to that proposed for the Meerwein–Ponndorf–Verley (MPV) reduction, and importantly, it is the interaction of the sodium cation of the base with both the nitrogen and oxygen atoms of the sulfinamide moiety that makes feasible, and determines the diastereoselectivity of, the reaction.  相似文献   

14.
Versatile syntheses of secondary and tertiary amines by highly efficient direct N‐alkylation of primary and secondary amines with alcohols or by deaminative self‐coupling of primary amines have been successfully realized by means of a heterogeneous bimetallic Pt–Sn/γ‐Al2O3 catalyst (0.5 wt % Pt, Pt/Sn molar ratio=1:3) through a borrowing‐hydrogen strategy. In the presence of oxygen, imines were also efficiently prepared from the tandem reactions of amines with alcohols or between two primary amines. The proposed mechanism reveals that an alcohol or amine substrate is initially dehydrogenated to an aldehyde/ketone or NH‐imine with concomitant formation of a [PtSn] hydride. Condensation of the aldehyde/ketone species or deamination of the NH‐imine intermediate with another molecule of amine forms an N‐substituted imine which is then reduced to a new amine product by the in‐situ generated [PtSn] hydride under a nitrogen atmosphere or remains unchanged as the final product under an oxygen atmosphere. The Pt–Sn/γ‐Al2O3 catalyst can be easily recycled without Pt metal leaching and has exhibited very high catalytic activity toward a wide range of amine and alcohol substrates, which suggests potential for application in the direct production of secondary and tertiary amines and N‐substituted imines.  相似文献   

15.
The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N‐heterocyclic carbene complexes. Three different catalyst systems are presented that all employ 1,3‐diisopropylimidazol‐2‐ylidene (IiPr) as the carbene ligand. In addition, potassium tert‐butoxide and a tricycloalkylphosphine are required for the amidation to proceed. In the first system, the active catalyst is generated in situ from [RuCl2(cod)] (cod=1,5‐cyclooctadiene), 1,3‐diisopropylimidazolium chloride, tricyclopentylphosphonium tetrafluoroborate, and base. The second system uses the complex [RuCl2(IiPr)(p‐cymene)] together with tricyclohexylphosphine and base, whereas the third system employs the Hoveyda–Grubbs 1st‐generation metathesis catalyst together with 1,3‐diisopropylimidazolium chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction mixture. Addition of the amine forms the hemiaminal that undergoes dehydrogenation to the amide. A catalytic cycle is proposed with the {(IiPr)RuII} species as the catalytically active components.  相似文献   

16.
Piperidine was reacted with methanol under a hydrogen stream in the presence of (H3O)2[(W6Cl8)Cl6]·6H2O supported on silica gel. When the temperature was raised above 200 °C, the catalytic activity of the cluster appeared. Piperidine N-methylation proceeded yielding N-methylpiperidine in 95% selectivity at 350 °C. The corresponding halide clusters of niobium, molybdenum, and tantalum supported on silica gel also catalyzed the reaction. Primary alcohols such as ethanol and 1-propanol produced the corresponding N-alkyl products of piperidine; however, secondary and tertiary alcohols did not. Selective N-methylation of pyrrolidine, hexamethyleneimine, butylamine, and aniline also proceeded. Thus, the clusters catalyzed alkylation of aliphatic, alicyclic, and aromatic amines with primary alcohols. A Brønsted acid site attributable to a hydroxo ligand, which is formed on the cluster complex by thermal activation, is proposed as the active site of the catalyst.  相似文献   

17.
A highly diastereoselective and enantioselective Brønsted acid catalyzed reductive condensation of N?H imines was developed. This reaction is catalyzed by a chiral disulfonimide (DSI), uses Hantzsch esters as a hydrogen source, and delivers useful C2‐symmetric secondary amines.  相似文献   

18.
Acid‐catalyzed Friedel–Crafts alkylation of 1,3‐dicarbonyl compounds with electrophilic alcohols, is known to be an effective C? C bond forming reaction. However, until now, this reaction has not been amenable for α‐alkylation of aryl methyl ketones because of the notoriously low nucleophilicities of these compounds. Therefore, α‐alkylation of aryl methyl ketone relies on precious metal catalysts and also, the use of primary alcohols is mandatory. In this study, we found that a system composed of a Fe(OTf)3 catalyst and chlorobenzene solvent is sufficient to promote the title Friedel–Crafts reaction by using benzhydrols as electrophiles. 3,4‐Dihydro‐9‐(2‐hydroxy‐4,4‐dimethyl‐6‐oxo‐1‐cyclohexen‐1‐yl)‐3,3‐dimethyl‐xanthen‐1(2 H)‐one was also applicable as an electrophile in this type of benzylation reaction. On the basis of this result, a three‐component reaction of salicylaldehyde, dimedone, and aryl methyl ketone was also developed, and this provided an efficient way for the synthesis of densely substituted 4H‐chromene derivatives.  相似文献   

19.
The canonical SN2 behavior displayed by alcohols and activated alkyl halides in basic media (O‐alkylation) is superseded by a pathway leading to carbinol C‐alkylation under the conditions of rhodium‐catalyzed transfer hydrogenation. Racemic and asymmetric propargylations are described.  相似文献   

20.
The development of efficient and eco-friendly methods for the synthesis of elaborate amines is highly desired as they are valuable chemicals. The catalytic alkylation of amines using alcohols as alkylating agents, through the so-called borrowing hydrogen process, satisfies several of the principles of green chemistry. In this paper, four neutral half-sandwich complexes of Ru(II), Rh(III), and Ir(III) have been synthesized and tested as catalysts in the N-benzylation of amines with benzyl alcohol. The new derivatives contain a N^N′ anionic ligand derived from 5-(pyridin-2-ylmethylene)hydantoin (Hpyhy) that has never been tested in metal complexes with catalytic applications. In particular, the Ir derivatives, [(Cp*)IrX(pyhy)] (X = Cl or H), exhibit high activity along with good selectivity in the process. Indeed, the scope of the optimized protocol has been proved in the benzylation of several primary and secondary amines. The selectivity towards monoalkylated or dialkylated amines has been tuned by adjusting the amine:alcohol ratio and the reaction time. Experimental results support a mechanism consisting of three consecutive steps, two of which are Ir catalyzed, and a favorable condensation step without the assistance of the catalyst. Moreover, an unproductive competitive pathway can operate when the reaction is performed in open-air vessels, due to the irreversible release of H2. This route is hampered when the reaction is carried out in close vessels, likely because the release of H2 is reversed through metal-based heterolytic cleavage. From our viewpoint, these results show the potential of the new catalysts in a very attractive and promising methodology for the synthesis of amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号