首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that chiral Zn2+ complexes that were designed to mimic the actions of class‐I and class‐II aldolases catalyzed the enantioselective aldol reactions of acetone and its analogues thereof with benzaldehyde derivatives. Herein, we report the synthesis of new chiral Zn2+ complexes that contain Zn2+? tetraazacyclododecane (Zn2+? [12]aneN4) moieties and amino acids that contain aliphatic, aromatic, anionic, cationic, and dipeptide side chains. The chemical and optical yields of the aldol reaction were improved (up to 96 % ee) by using ZnL complexes of L ‐decanylglycyl‐pendant [12]aneN4 (L ‐ZnL7), L ‐naphthylalanyl‐pendant [12]aneN4 (L ‐ZnL10), L ‐biphenylalanyl‐pendant [12]aneN4 (L ‐ZnL11), and L ‐phenylethylglycyl‐pendant [12]aneN4 ligands (L ‐ZnL12). UV/Vis and circular dichroism (CD) titrations of acetylacetone (acac) with ZnL complexes confirmed that a ZnL? (acac)? complex was exclusively formed and not the enaminone of ZnL and acac, as we had previously proposed. Moreover, the results of stopped‐flow experiments indicated that the complexation of (acac)? with ZnL was complete within milliseconds, whereas the formation of an enaminone required several hours. X‐ray crystal‐structure analysis of L ‐ZnL10 and the ZnL complex of L ‐diphenylalanyl‐pendant [12]aneN4 (L ‐ZnL13) shows that the NH2 groups of the amino‐acid side chains of these ligands are coordinated to the Zn2+ center as the fourth coordination site, in addition to three nitrogen atoms of the [12]aneN4 rings. The reaction mechanism of these aldol reactions is discussed and some corrections are made to our previous mechanistic hypothesis.  相似文献   

2.
Racemates of hydrophobic amino acids with linear side chains are known to undergo a unique series of solid‐state phase transitions that involve sliding of molecular bilayers upon heating or cooling. Recently, this behaviour was shown to extend also to quasiracemates of two different amino acids with opposite handedness [Görbitz & Karen (2015). J. Phys. Chem. B, 119 , 4975–4984]. Previous investigations are here extended to an l ‐2‐aminobutyric acid–d ‐methionine (1/1) co‐crystal, C4H9NO2·C5H11NO2S. The significant difference in size between the –CH2CH3 and –CH2CH2SCH3 side chains leads to extensive disorder at room temperature, which is essentially resolved after a phase transition at 229 K to an unprecedented triclinic form where all four d ‐methionine molecules in the asymmetric unit have different side‐chain conformations and all three side‐chain rotamers are used for the four partner l ‐2‐aminobutyric acid molecules.  相似文献   

3.
A new type of molecular arrangement for dipeptides is observed in the crystal structure of l ‐phenyl­alanyl‐l ‐alanine dihydrate, C12H16N2O3·2H2O. Two l ‐Phe and two l ‐Ala side chains aggregate into large hydro­phobic columns within a three‐dimensional hydrogen‐bond network.  相似文献   

4.
The reaction of 2,4‐pentanedione ( 1 ) with (R)‐(—)‐2‐phenylglycine methyl ester ( 2 ), (R)‐(—)‐2‐phenylglycinol ( 3 ) and the proteinogenic amino acids (2S,3R)‐(—)‐2‐amino‐3‐hydroxybutyric acid (L ‐threonine) ( 4 ) and (R)‐(—)‐2‐amino‐3‐mercaptopropionic acid (L ‐cysteine) ( 5 ) methyl esters was investigated. The corresponding enamines 6 , 7 and 8 were isolated and characterized spectroscopically whereas 9 , which is unstable, was transformed in situ into 13 . Treatment of 7 , 8 and 9 with boron trifluoride etherate afforded the new [1,4]oxazepines 10 , 11 and [1,4]thiazepine ( 12 ) as their BF3O? salts. The structures of the enamines and their corresponding seven‐membered heterocycles were assessed by 1D and 2D NMR spectroscopy. Variable‐temperature experiments revealed different molecular mobility behavior among these heterocycles. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Cyclic D,L ‐α‐peptides are able to self‐assemble to nanotubes, although the inherent reason of the stability of this kind of nanotube as well as the intrinsic driving force of self‐assembly of the cyclic D ,L ‐α‐peptides still remain elusive. In this work, using several computational approaches, we investigated the structural and energy characteristics of a series of cyclo[(‐L ‐Phe‐D ‐Ala‐)4] and cyclo[(‐L ‐Ala‐D ‐Ala‐)4] oligomers. The results reveal that the thermodynamic stability, cooperativity, and self‐assembly patterns of cyclic D ,L ‐α‐peptide nanotubes are mainly determined by the interactions between cross‐strand side chains instead of those between backbones. For cyclo[(‐L ‐Phe‐D ‐Ala‐)4] oligomers, the steric interaction between cross‐strand side chains, especially the electrostatic repulsion between the phenyls in Phe residues, brings anticooperative effect into parallel stacking mode, which is responsible for the preference of self‐assembling nanotube in antiparallel vs. parallel stacking orientation. Based on our results, a novel self‐assembling mechanism is put forward—it is the L ‐L antiparallel dimer of cyclo[(‐L ‐Phe‐D ‐Ala‐)4], instead of the commonly presumed monomer, that acts as the basic building block in self assembly. It explains why these cyclic peptides uniquely self‐assemble to form antiparallel nanotubes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

6.
We report two isoreticular 3D peptide‐based porous frameworks formed by coordination of the tripeptides Gly‐L ‐His‐Gly and Gly‐L ‐His‐L ‐Lys to CuII which display sponge‐like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H2O while CO2 adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbone, can be post‐synthetically modified to produce urea‐functionalised networks by following methodologies typically used for metal–organic frameworks built from more rigid “classical” linkers.  相似文献   

7.
The crystal modifications and multiple melting behavior of poly(L ‐lactic acid‐co‐D ‐lactic acid) (98/2) as a function of crystallization temperature were studied by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). It was found that the disorder (α′) and order (α) phases of poly(L ‐lactic acid) (PLLA) were formed in cold‐crystallized poly(L ‐lactic acid‐co‐D ‐lactic acid) samples at low (<110 °C) and high (≥110 °C) temperatures, respectively. A disorder‐to‐order (α′‐to‐α) phase transition occurred during the annealing process of the α′‐crystal at elevated temperatures, which proceeded quite slowly even at the peak temperature of the exotherm Pexo but much more rapidly at higher temperature close to the melting region. The presence or absence of an additional endothermic peak before the exotherm in the DSC thermograph of the α′‐crystal was strongly dependent on the heating rate, indicating that a melting process involved during the α′‐to‐α phase transition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

8.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

9.
The catalytic properties of all proteinogenic, acyclic amino acids for direct aldol reaction in H2O, assisted by various surfactants, were investigated. The basic and neutral amino acids were shown to be efficient catalysts, giving rise to good‐to‐excellent yields of adducts (up to 95%), with moderate‐to‐good diastereoselectivities (up to 86%), L ‐arginine being the most‐effective catalyst. The syn/anti diastereoisomer ratio could be readily tuned by proper choice of the amino acid used. Also, the range of substrates that underwent the reaction was extended to less‐reactive aldehydes carrying electron‐donating Br substituents.  相似文献   

10.
The efficient scalable syntheses of 2‐acetamido‐1,2‐dideoxy‐D ‐galacto‐nojirimycin (DGJNAc) and 2‐acetamido‐1,2‐dideoxy‐D ‐gluco‐nojirimycin (DNJNAc) from D ‐glucuronolactone, as well as of their enantiomers from L ‐glucuronolactone, are reported. The evaluation of both enantiomers of DNJNAc and DGJNAc, along with their N‐alkyl derivatives, as glycosidase inhibitors showed that DGJNAc and its N‐alkyl derivatives were all inhibitors of α‐GalNAcase but that none of the epimeric DNJNAc derivatives inhibited this enzyme. In contrast, both DGJNAc and DNJNAc, as well as their alkyl derivatives, were potent inhibitors of β‐GlcNAcases and β‐GalNAcases. Neither of the L ‐enantiomers showed any significant inhibition of any of the enzymes tested. Correlation of the in vitro inhibition with the cellular data, by using a free oligosaccharide analysis of the lysosomal enzyme inhibition, revealed the following structure–property relationship: hydrophobic side‐chains preferentially promoted the intracellular access of iminosugars to those inhibitors with more‐hydrophilic side‐chain characteristics.  相似文献   

11.
The amino acid l ‐phenylalanine has been cocrystallized with d ‐2‐aminobutyric acid, C9H11NO2·C4H9NO2, d ‐norvaline, C9H11NO2·C5H11NO2, and d ‐methionine, C9H11NO2·C5H11NO2S, with linear side chains, as well as with d ‐leucine, C9H11NO2·C6H13NO2, d ‐isoleucine, C9H11NO2·C6H13NO2, and d ‐allo‐isoleucine, C9H11NO2·C6H13NO2, with branched side chains. The structures of these 1:1 complexes fall into two classes based on the observed hydrogen‐bonding pattern. From a comparison with other l :d complexes involving hydrophobic amino acids and regular racemates, it is shown that the structure‐directing properties of phenylalanine closely parallel those of valine and isoleucine but not those of leucine, which shares side‐chain branching at Cγ with phenylalanine and is normally considered to be the most closely related non‐aromatic amino acid.  相似文献   

12.
A series of bis‐amides decorated with pyridyl and phenyl moieties derived from L ‐amino acids having an innocent side chain (L ‐alanine and L ‐phenyl alanine) were synthesized as potential low‐molecular‐weight gelators (LMWGs). Both protic and aprotic solvents were found to be gelled by most of the bis‐amides with moderate to excellent gelation efficiency (minimum gelator concentration=0.32–4.0 wt. % and gel–sol dissociation temperature Tgel=52–110 °C). The gels were characterized by rheology, DSC, SEM, TEM, and temperature‐variable 1H NMR measurements. pH‐dependent gelation studies revealed that the pyridyl moieties took part in gelation. Structure–property correlation was attempted using single‐crystal X‐ray and powder X‐ray diffraction data. Remarkably, one of the bis‐pyridyl bis‐amide gelators, namely 3,3‐Phe (3‐pyridyl bis‐amide of L ‐phenylalanine) displayed outstanding shape‐sustaining, load‐bearing, and self‐healing properties.  相似文献   

13.
Integramide A is a 16‐amino acid peptide inhibitor of the enzyme HIV‐1 integrase. We have recently reported that the absolute stereochemistries of the dipeptide sequence near the C terminus are L ‐Iva14‐D ‐Iva15. Herein, we describe the syntheses of the natural compound and its D ‐Iva14‐L ‐Iva15 diastereomer, and the results of their chromatographic/mass spectrometric analyses. We present the conformational analysis of the two compounds and some of their synthetic intermediates of different main‐chain length in the crystal state (by X‐ray diffraction) and in solvents of different polarities (using circular dichroism, FTIR absorption, and 2D NMR techniques). These data shed light on the mechanism of inhibition of HIV‐1 integrase, which is an important target for anti‐HIV therapy.  相似文献   

14.
Guanidinium organosulfonates (GSs) are a large and well‐explored archetypal family of hydrogen‐bonded organic host frameworks that have, over the past 25 years, been regarded as nonporous. Reported here is the only example to date of a conventionally microporous GS host phase, namely guanidinium 1,4‐benzenedisulfonate ( p ‐G2BDS ). p ‐G2BDS is obtained from its acetone solvate, AcMe@ G2BDS , by single‐crystal‐to‐single‐crystal (SC‐SC) desolvation, and exhibits a Type I low‐temperature/pressure N2 sorption isotherm (SABET=408.7(2) m2 g?1, 77 K). SC‐SC sorption of N2, CO2, Xe, and AcMe by p ‐G2BDS is explored under various conditions and X‐ray diffraction provides a measurement of the high‐pressure, room temperature Xe and CO2 sorption isotherms. Though p ‐G2BDS is formally metastable relative to the “collapsed”, nonporous polymorph, np ‐G2BDS , a sample of p ‐G2BDS survived for almost two decades under ambient conditions. np ‐G2BDS reverts to zCO2@ p ‐G2BDS or yXe@ p ‐G2BDS (y,z=variable) when pressure of CO2 or Xe, respectively, is applied.  相似文献   

15.
Chiral discrimination of seven enantiomeric pairs of β‐3‐homo‐amino acids was studied by using the kinetic method and trimeric metal‐bound complexes, with natural and unnatural α‐amino acids as chiral reference compounds and divalent metal ions (Cu2+ and Ni2+) as the center ions. The β‐3‐homo‐amino acids were selected for this study because, first of all, chiral discrimination of β‐amino acids has not been extensively studied by mass spectrometry. Moreover, these β‐3‐homo‐amino acids studied have different aromatic side chains. Thus, the emphasis was to study the effect of the side chain (electron density of the phenyl ring, as well as the difference between phenyl and benzyl side chains) for the chiral discrimination. The results showed that by the proper choice of a metal ion and a chiral reference compound, all seven enantiomeric pairs of β‐3‐homo‐amino acids could be differentiated. Moreover, it was noted that the β‐3‐homo‐amino acids with benzyl side chains provided higher enantioselectivity than the corresponding phenyl ones. However, increasing or decreasing the electron density of the aromatic ring by different substituents in both the phenyl and benzyl side chains had practically no role for chiral discrimination of β‐3‐homo‐amino acids studied. When copper was used as the central metal, the phenyl side chain containing reference molecules (S)‐2‐amino‐2‐phenylacetic acid (L ‐Phg) and (S)‐2‐amino‐2‐(4‐hydroxyphenyl)‐acetic acid (L ‐4′‐OHPhg) gave rise to an additional copper‐reduced dimeric fragment ion, [CuI(ref)(A)]+. The inclusion of this ion improved noticeably the enantioselectivity values obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Side chains of docetaxel and its isomer were obtained through Staudinger cycloaddition and catalytic hydrogenation of chlorophenyl intermediates, using chlorobenzaldehyde as starting material. Syntheses of three novel chiral azetidinone derivatives through the Staudinger cycloaddition reaction of chlorophenyl chi‐ral amine Schiff base with different substituted positions were described and their ring‐opening reaction under the catalysis of Pd/MgCO3 or Pd/C to afford side chains of docetaxel and its isomer in high yields was investigated. Finally, docetaxel and its isomer were obtained. Single crystal of (3S,4R)‐3‐hydroxy‐N‐[(S)‐(l‐phenyl)ethyl]‐4 ‐(2′‐chlorophenyl) ‐2‐azetidinone ( 4c ) was obtained, the configuration of which was determined by X‐ray diffraction. Because of the mild cyclization reaction condition and convenient asymmetric resolution operation when p‐chlorobenzaldehyde was employed instead of benzaldehyde, the yield of cyclization and hydrogenation increased dramatically and the total yield of docetaxel was higher than the result in literature. When o‐chlorobenzaldehyde was employed instead of benzaldehyde an isomer of docetaxel was obtained by the same way.  相似文献   

17.
The title salt, C3H8NO2+·C2HO4, formed between l ‐cysteine and oxalic acid, was studied as part of a comparison of the structures and properties of pure amino acids and their cocrystals. The structure of the title salt is very different from that formed by oxalic acid and equivalent amounts of d ‐ and l ‐cysteine molecules. The asymmetric unit contains an l ‐cysteinium cation and a semioxalate anion. The oxalate anion is only singly deprotonated, in contrast with the double deprotonation in the crystal structure of bis(dl ‐cysteinium) oxalate. The oxalate anion is not planar. The conformation of the l ‐cysteinium cation differs from that of the neutral cysteine zwitterion in the monoclinic and orthorhombic polymorphs of l ‐cysteine, but is similar to that of the cysteinium cation in bis(dl ‐cysteinium) oxalate. The structure of the title salt can be described as a three‐dimensional framework formed by ions linked by strong O—H...O and N—H...O and weak S—H...O hydrogen bonds, with channels running along the crystallographic a axis containing the bulky –CH2SH side chains of the cysteinium cations. The cations are only linked through hydrogen bonds via semioxalate anions. There are no direct cation–cation interactions via N—H...O hydrogen bonds between the ammonium and carboxylate groups, or via weaker S—H...S or S—H...O hydrogen bonds.  相似文献   

18.
19.
The crystal structures of 1,2,3,4,6‐penta‐O‐acetyl‐α‐d ‐mannopyranose, C16H22O11, and 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranosyl‐(1→2)‐3,4,6‐tri‐O‐acetyl‐α‐d ‐mannopyranosyl‐(1→3)‐1,2,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranose, C40H54O27, were determined and compared to those of methyl 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranoside, methyl α‐d ‐mannopyranoside and methyl α‐d ‐mannopyranosyl‐(1→2)‐α‐d ‐mannopyranoside to evaluate the effects of O‐acetylation on bond lengths, bond angles and torsion angles. In general, O‐acetylation exerts little effect on the exo‐ and endocyclic C—C and endocyclic C—O bond lengths, but the exocyclic C—O bonds involved in O‐acetylation are lengthened by ~0.02 Å. The conformation of the O‐acetyl side‐chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°‐alcoholic C atom or bisecting the H—C—H bond angle of a 1°‐alcoholic C atom. Of the two C—O bonds that determine O‐acetyl side‐chain conformation, that involving the alcoholic C atom exhibits greater rotational variability than that involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of O‐acetyl side‐chain conformations in saccharides. Experimental evidence was also obtained to confirm density functional theory (DFT) predictions of C—O and O—H bond‐length behavior in a C—O—H fragment involved in hydrogen bonding.  相似文献   

20.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号