首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geminally diaurated μ2‐aryl complexes have been prepared where gold(I) centers were bridged by the semirigid diphosphine ligands bis(2‐diphenylphosphinophenyl)ether (DPEphos) and 4,6‐bis(diphenylphosphanyl)dibenzo[b,d]furan (DBFphos). Diaurated complexes were synthesized in ligand redistribution reactions of the corresponding di‐gold dichlorides with di‐gold diaryls (six of them new) and silver(I) salts. Diaurated complexes were isolated as salts of the minimally coordinating anions SbF6? and ReO4?. Efforts to prepare salts of the tetraarylborate [B(3,5‐(CF3)2C6H3)4]? led to transmetalation from boron, with crystallization of the fluorinated aryl complex. The new complexes were characterized by multinuclear NMR, absorption and emission spectroscopies, 77 K emission lifetimes, and by combustion analysis; three are crystallographically characterized. Structures of geminally diaurated aryl ligands are compared to those of mono‐aurated analogues. Both crystal structures and density‐functional theory calculations indicate slight but observable disruptions of aryl ligand aromaticity by geminal di‐gold binding. An intermolecular aurophilic interaction in one structurally authenticated complex was examined computationally.  相似文献   

2.
The synthesis and characterization of the first series of low‐coordinate bis(terphenyl) complexes of the Group 12 metals, [Zn(2,6‐Naph2C6H3)2] ( 1 ), [Cd(OEt2)(2,6‐Naph2C6H3)2] ( 2 ) and [Hg(OEt2)(2,6‐Naph2C6H3)2] ( 3 ) (Naph=1‐C10H7) are described. The naphthyl substituents of the terphenyl ligands confer considerable steric bulk, and as a result of limited flexibility introduce multiple conformations to these unusual systems. In the solid state, complex 1 features a two‐coordinate Zn centre with the ligands oriented in a syn/anti conformation, whereas the three‐coordinate distorted T‐shaped complexes 2 and 3 feature the ligands in the syn/syn configurations. The results of DFT calculations are in good agreement with the solid‐state configurations for these complexes and support the spectroscopic measurements, which indicate several conformers in solution.  相似文献   

3.
The synthesis and reactivity of a silyliumylidene cation stabilized by an amidinate ligand and 4‐dimethylaminopyridine (DMAP) are described. The reaction of the amidinate silicon(I) dimer [ L Si:]2 ( 1 ; L =PhC(NtBu)2) with one equivalent of N‐trimethylsilyl‐4‐dimethylaminopyridinium triflate [4‐NMe2C5H4NSiMe3]OTf and two equivalents of DMAP in THF afforded [ L Si(DMAP)]OTf ( 2 ). The ambiphilic character of 2 is demonstrated from its reactivity. Treatment of 2 with 1 in THF afforded the disilylenylsilylium triflate [ L′ 2( L )Si]OTf ( 3 ; L′ = L Si:) with the displacement of DMAP. The reaction of 2 with [K{HB(iBu)3}] and elemental sulfur in THF afforded the silylsilylene [ L SiSi(H){(NtBu)2C(H)Ph}] ( 4 ) and the base‐stabilized silanethionium triflate [ L Si(S)DMAP]OTf ( 5 ), respectively. Compounds 2 , 3 , and 5 have been characterized by X‐ray crystallography.  相似文献   

4.
A polycyclic aromatic ligand for site‐selective metal coordination was designed by using DFT calculations. The computational prediction was confirmed by experiments: 2,3,6,7‐tetramethoxy‐9,10‐dimethylanthracene initially reacts with [(C5H5)Ru(MeCN)3]BF4 to give the kinetic product with a [(C5H5)Ru]+ fragment coordinated at the terminal ring, which is then transformed into the thermodynamic product with coordination through the central ring. These isomeric complexes have markedly different UV/Vis spectra, which was explained by analysis of the frontier orbitals. At the same time, the calculations suggest that electrostatic interactions are mainly responsible for the site selectivity of the coordination.  相似文献   

5.
A number of saturated abnormal N‐heterocyclic carbene (NHC) complexes of gold, in combination with KBArF4 as activator, were successfully applied in the chemoselective addition of hydrazine to alkynes. The reaction proceeds even at room temperature, which was not possible to date with gold catalysts. The reaction can be applied to a number of substituted arylalkynes. With alkylalkynes the yields are low. The saturated abnormal NHC ligands are resistant to isomerization to the saturated normal NHC coordination mode under basic reaction conditions. Under acidic conditions, a simple protonation at the nitrogen atom not neighboring the carbene center was observed and unambiguously characterized by an X‐ray crystal‐structure analysis. Computational studies confirm that such an isomerization would be highly exothermic, the observed kinetic stability probably results from the need to shift two protons in such a process.  相似文献   

6.
The synthesis of two novel titanium carbene complexes from the bis(thiophosphinoyl)methanediide geminal dianion 1 (SCS2?) is described. Dianion 1 reacts cleanly with 0.5 equivalents of [TiCl4(thf)2] to afford the bis‐carbene complex [(SCS)2Ti] ( 2 ) in 86 % yield. The mono‐carbene complex [(SCS)TiCl2(thf)] ( 3 ) can also be obtained by using an excess of [TiCl4(thf)2]. The structures of 2 and 3 are confirmed by X‐ray crystallography. A strong nucleophilic reactivity towards various electrophiles (ketones and aldehydes) is observed. The reaction of 3 with N,N′‐dicyclohexylcarbodiimide (DCC) and phenyl isocyanate leads to the formation of two novel diphosphinoketenimines 8 a and 8 b . The bis‐titanium guanidinate complex 9 is trapped as the by‐product of the reaction with DCC. The X‐ray crystal structures of 8 a and 9 are presented. The mechanism of the reaction between complex 3 and DCC is rationalized by DFT studies.  相似文献   

7.
Four carboxylate‐bridged GdIII complexes ( 1 – 4 ) with 1D/2D structures have been synthesized by using the hydrothermal reaction of Gd2O3 with various carboxylate ligands. Compounds 1 and 2 contained the same [2n] GdIII? OH ladders, but with different crystallographically independent GdIII ions, whilst the structures of compounds 3 and 4 were composed of [Gd43‐OH)2(piv)8(H2O)2]2+ units and 1D ladder GdIII chains, respectively. Antiferromagnetic interactions occurred in compounds 1 – 3 , owing to their small Gd? O? Gd angles, whereas ferromagnetic coupling occurred in compound 4 , in which the Gd? O? Gd angles were larger. These complexes exhibited a distinct magnetocaloric effect (MCE), which was affected by their different magnetic densities and exchange interactions. Among these compounds, complex 4 presented the largest MCE (?ΔSmmax=43.6 J kg?1 K?1), the lowest Mw/NGd ratio (the highest magnetic density), and weak ferromagnetic coupling. Therefore, a lower Mw/NGd ratio and weaker exchange interactions (a smaller absolute value of θ) between GdIII ions resulted in a larger MCE for the GdIII complexes.  相似文献   

8.
Redox transmetallation ligand exchange reactions involving a rare earth metal, 2,4,6‐trimethylphenol (HOmes), and a diarylmercurial afford rare earth aryloxo complexes, which are structurally characterized. Both the lanthanoid contraction and the identity of the reaction solvent are found to influence the outcome of the reactions. Using THF in the reaction affords a dinuclear species [Ln2(Omes)6(thf)4]?2THF (Ln=La 1 , Nd 2 ) for the lighter rare earth metals, while a mononuclear species [Ln(Omes)3(thf)3] (Ln=Sm 3 , Tb 5 , Er 6 , Yb 7 , Y 8 ) is obtained for the heavier rare earth elements. Surprisingly, there is no change in metal coordination number between the two structural motifs. A divalent trinuclear linear complex [Eu3(Omes)6(thf)6] 4 is obtained for Eu, and features solely bridging aryloxide ligands. Using DME as the reaction solvent affords [La(Omes)3(dme)2] 9 from the reaction mixture, and [Ln2(Omes)6(dme)2]?PhMe (La 10 , Nd 11 ) and [Y(Omes)3(dme)2] 14 following crystallization of the crude product from toluene. The dinuclear species [Eu2(Omes)4(dme)4] 12 contains two unidentate and two chelating DME ligands, and contrasts the linear structure of 4 . Treatment of HOmes and HgPh2 with Yb metal in DME affords the mixed valent YbII/III complex [Yb2(Omes)5(dme)2] 13 , which is stabilized by an intramolecular π‐Ph–Yb interaction, and is a rare example of a mixed valent rare earth aryloxide. Treatment of Er metal with HOmes at elevated temperature (solvent free) affords the homoleptic [Er4(Omes)12] 15 , which consists of a tetranuclear array of Er atoms arranged in a ‘herringbone’ fashion; the structure is stabilized by intramolecular π‐Ph–Er interactions. Reaction of La metal with HOmes under similar conditions yields toluene insoluble “La(Omes)3”, which affords 1 following extraction with THF.  相似文献   

9.
Diphenylphosphinoethyl‐functionalised imidazolium salts and their silver–carbene complexes were used to synthesise a series of di‐ and trinuclear gold complexes through ligand exchange and transmetallation, respectively. Besides a few positively charged macrocyclic compounds with different anions (both with and without activation of the carbene function), we were able to obtain neutral polynuclear complexes by varying the gold precursor. The synthesised gold complexes show a variety of photophysical properties, including bright white photoluminescence at ambient temperature.  相似文献   

10.
A new class of luminescent alkynylplatinum(II) complexes with a tridentate pyridine‐based N‐heterocyclic carbene (2,6‐bis(1‐butylimidazol‐2‐ylidenyl)pyridine) ligand, [PtII(C^N^C)(C?CR)][PF6], and their chloroplatinum(II) precursor complex, [PtII(C^N^C)Cl][PF6], have been synthesized and characterized. One of the alkynylplatinum(II) complexes has also been structurally characterized by X‐ray crystallography. The electrochemistry, electronic absorption and luminescence properties of the complexes have been studied. Nanosecond transient absorption (TA) spectroscopy has also been performed to probe the nature of the excited state. The origin of the absorption and emission properties has been supported by computational studies.  相似文献   

11.
A series of di(gold(I) aryls), L(AuR)(2) (L = DPEphos, DBFphos, or Xantphos; R = 1-naphthyl, 2-naphthyl, 9-phenanthryl, or 1-pyrenyl), have been prepared. The complexes were characterized by multinuclear NMR spectroscopy, static and time-dependent optical spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. In addition, DFT calculations on model dinuclear gold complexes have been used to examine the electronic structures. Photophysical properties of the dinuclear complexes have been compared to mononuclear analogues. Low-temperature excited-state lifetimes for both the mononuclear and dinuclear complexes in toluene indicate triplet-state emission. Time-resolved DFT calculations suggest that emission originates from aryl-ligand transitions, even if the LUMO resides elsewhere.  相似文献   

12.
Even though the Dewar–Chatt–Duncanson model has been successfully used by chemists since the 1950s, no experimental methodology is yet known to unambiguously estimate the constituents (donation and back‐donation) of a metal–ligand interaction. It is demonstrated here that one of these components, the metal‐to‐ligand π back‐donation, can be effectively probed by NMR measurements aimed at determining the rotational barrier of a C?N bond (ΔHr) of a nitrogen acyclic carbene ligand. A large series of gold(I) complexes have been synthesized and analyzed, and it was found that the above experimental observables show an accurate correlation with back‐donation, as defined theoretically by the appropriate charge displacement originated upon bond formation. The proposed method is potentially of wide applicability for analyzing the ligand effect in metal catalysts and guiding their design.  相似文献   

13.
A diphosphine chelate ligand with a wide and flexible bite angle, a unique stereochemical environment, and redox‐active and ambiphilic character is reported. Initially generated as its HgCl2 complex by reaction of 1,2‐fc(PPh2)(SnMe3) (fc=ferrocenediyl) with HgCl2 in acetone, treatment with [n‐Bu4N]CN readily liberates the free chiral bidentate ligand. An intermolecular ClHg?Cl→Hgfc2 (2.9929(13) Å) interaction that is unprecedented in ambiphilic ligand chemistry is seen in the solid structure of Hg(fcPPh2)2?HgCl2 where the bridging mercury atom acts as a σ‐acceptor. Furthermore, a bis‐[Rh(COD)Cl] complex is introduced, which displays relatively short Rh???Hg contacts of 3.4765(5) and 3.4013(1) Å. Wiberg indices of 0.12 are determined for these Rh???Hg interactions and an AIM analysis reveals bond paths with an electron density ρ(r) of 1.2×10?2 and 1.4×10?2 e/a03 at the bond critical points.  相似文献   

14.
A series of mono‐, bis‐, and tris(phenoxy)–titanium(IV) chlorides of the type [Cp*Ti(2‐R? PhO)nCl3?n] (n=1–3; Cp*=pentamethylcyclopentadienyl) was prepared, in which R=Me, iPr, tBu, and Ph. The formation of each mono‐, bis‐, and tris(2‐alkyl‐/arylphenoxy) series was authenticated by structural studies on representative examples of the phenyl series including [Cp*Ti(2‐Ph? PhO)Cl2] ( 1 PhCl2 ), [Cp*Ti(2‐Ph? PhO)2Cl] ( 2 PhCl ), and [Cp*Ti(2‐Ph? PhO)3] ( 3 Ph ). The metal‐coordination geometry of each compound is best described as pseudotetrahedral with the Cp* ring and the 2‐Ph? PhO and chloride ligands occupying three leg positions in a piano‐stool geometry. The mean Ti? O distances, observed with an increasing number of 2‐Ph? PhO groups, are 1.784(3), 1.802(4), and 1.799(3) Å for 1 PhCl2 , 2 PhCl , and 3 Ph , respectively. All four alkyl/aryl series with Me, iPr, tBu, and Ph substituents were tested for ethylene homopolymerization after activation with Ph3C+[B(C6F5)4]? and modified methyaluminoxane (7% aluminum in isopar E; mMAO‐7) at 140 °C. The phenyl series showed much higher catalytic activity, which ranged from 43.2 and 65.4 kg (mmol of Ti?h)?1, than the Me, iPr, and tBu series (19.2 and 36.6 kg (mmol of Ti?h)?1). Among the phenyl series, the bis(phenoxide) complex of 2 PhCl showed the highest activity of 65.4 kg (mmol of Ti?h)?1. Therefore, the catalyst precursors of the phenyl series were examined by treating them with a variety of alkylating reagents, such as trimethylaluminum (TMA), triisobutylaluminum (TIBA), and methylaluminoxane (MAO). In all cases, 2 PhCl produced the most catalytically active alkylated species, [Cp*Ti(2‐Ph? PhO)MeCl]. This enhancement was further supported by DFT calculations based on the simplified model with TMA.  相似文献   

15.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

16.
17.
18.
The intermolecular alkoxylation of alkynes is the oldest application of cationic gold(I) catalysts; however, no systematic experimental data about the role of the anion are available. In this contribution, the role of the anion in this catalytic reaction as promoted by a N‐heterocyclic carbene‐based gold catalyst, [(NHC)AuX] (X=BARF?, BF4?, OTf?, OTs?, TFA?, or OAc?) is analyzed, through a combined experimental (NMR spectroscopy) and theoretical (DFT calculation) approach. The most important factor seems to be the ability to abstract the proton from the methanol during the nucleophilic attack, and such ability is related to the anion basicity. On the other hand, too high coordination power or basicity of the anion worsens the catalytic performance by preventing alkyne coordination or by forming too much free methoxide in solution, which poisons the catalyst. The intermediate coordinating power and basicity of the OTs? anion provides the best compromise to achieve efficient catalysis.  相似文献   

19.
The complexes [{(tmpa)CoII}2(μ‐L1)2?]2+ ( 12+ ) and [{(tmpa)CoII}2(μ‐L2)2?]2+ ( 22+ ), with tmpa=tris(2‐pyridylmethyl)amine, H2L1=2,5‐di‐[2‐(methoxy)‐anilino]‐1,4‐benzoquinone, and H2L2=2,5‐di‐[2‐(trifluoromethyl)‐anilino]‐1,4‐benzoquinone, were synthesized and characterized. Structural analysis of 22+ revealed a distorted octahedral coordination around the cobalt centers, and cobalt–ligand bond lengths that match with high‐spin CoII centers. Superconducting quantum interference device (SQUID) magnetometric studies on 12+ and 22+ are consistent with the presence of two weakly exchange‐coupled high‐spin cobalt(II) ions, for which the nature of the coupling appears to depend on the substituents on the bridging ligand, being antiferromagnetic for 12+ and ferromagnetic for 22+ . Both complexes exhibit several one‐electron redox steps, and these were investigated with cyclic voltammetry and UV/Vis/near‐IR spectroelectrochemistry. For 12+ , it was possible to chemically isolate the pure forms of both the one‐electron oxidized mixed‐valent 13+ and the two‐electron oxidized isovalent 14+ forms, and characterize them structurally as well as magnetically. This series thus provided an opportunity to investigate the effect of reversible electron transfers on the total spin‐state of the molecule. In contrast to 22+ , for 14+ the metal–ligand distances and the distances within the quinonoid ligand point to the existence of two low‐spin CoIII centers, thus showing the innocence of the quintessential non‐innocent ligands L. Magnetic data corroborate these observations by showing the decrease of the magnetic moment by roughly half (neglecting spin exchange effects) on oxidizing the molecules with one electron, and the disappearance of a paramagnetic response upon two‐electron oxidation, which confirms the change in spin state associated with the electron‐transfer steps.  相似文献   

20.
A “metal–ketimine+ArI(OR)2” approach has been developed for preparing metal–ketimido complexes, and ketimido ligands are found to stabilize high‐valent metallophthalocyanine (M? Pc) complexes such as ruthenium(IV) phthalocyanines. Treatment of bis(ketimine) ruthenium(II) phthalocyanines [RuII(Pc)(HN?CPh2)2] ( 1a ) and [RuII(Pc)(HNQu)2] ( 1b ; HNQu=N‐phenyl‐1,4‐benzoquinonediimine) with PhI(OAc)2 affords bis(ketimido) ruthenium(IV) phthalocyanines [RuIV(Pc)(N?CPh2)2] ( 2a ) and [RuIV(Pc)(NQu)2] ( 2b ), respectively. X‐ray crystal structures of 1b and [RuII(Pc)(PhN?CHPh)2] ( 1c ) show Ru? N(ketimine) distances of 2.075(4) and 2.115(3) Å, respectively. Complexes 2a , 2b readily revert to 1a , 1b upon treatment with phenols. 1H NMR spectroscopy reveals that 2a , 2b are diamagnetic and 2b exists as two isomers, consistent with a proposed eclipsed orientation of the ketimido ligands in these ruthenium(IV) complexes. The reaction of 1a , 1b with PhI(OAc)2 to afford 2a , 2b suggests the utility of ArI(OR)2 as an oxidative deprotonation agent for the generation of high‐valent metal complexes featuring M? N bonds with multiple bonding characters. DFT and time‐dependent (TD)‐DFT calculations have been performed on the electronic structures and the UV/Vis absorption spectra of 1b and 2b , which provide support for the diamagnetic nature of 2b and reveal a significant barrier for rotation of the ketimido group about the Ru? N(ketimido) bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号