首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly efficient strategy for the kinetic resolution of axially chiral BINAM derivatives involving a chiral Brønsted acid‐catalyzed imine formation and transfer hydrogenation cascade process was developed. The kinetic resolution provides a convenient route to chiral BINAM derivatives in high yields with excellent enantioselectivities.  相似文献   

2.
3.
4.
The first enantioselective polyene cyclization initiated by a BINOL‐derived chiral N‐phosphoramide (NPA) catalyzed protonation of an imine is described. The ion‐pair formed between the iminium ion and chiral counter anion of the NPA plays an important role for controlling the stereochemistry of the overall transformation. This strategy offers a highly efficient approach to fused tricyclic frameworks containing three contiguous stereocenters, which are widely found in natural products. In addition, the first catalytic asymmetric total synthesis of (?)‐ferruginol was accomplished with an NPA catalyzed enantioselective polyene cyclization, as the key step for the construction of the tricyclic core, with excellent yield and enantioselectivity.  相似文献   

5.
6.
The enantioselective synthesis of tropanols has been accomplished through chiral phosphoric acid catalyzed pseudotransannular ring opening of 1‐aminocyclohept‐4‐ene‐derived epoxides. The reaction proceeds together with the desymmetrization of the starting material and leads to the direct formation of the 8‐azabicyclo[3.2.1]octane scaffold with excellent stereoselectivity. The synthetic applicability of the reaction was demonstrated by the enantioselective synthesis of the two natural products (?)‐α‐tropanol and (+)‐ferruginine.  相似文献   

7.
A Brønsted acid catalyzed redox arylation of ynamides that employs aryl sulfoxides as the arylating agents is reported. This metal‐free transformation proceeds at room temperature and efficiently affords α‐arylated oxazolidinones in a redox‐neutral, atom‐economic fashion.  相似文献   

8.
9.
Asymmetric hydrogenation of imines leads directly to chiral amines, one of the most important structural units in chemical products, from pharmaceuticals to materials. However, highly effective catalysts are rare. This article reveals that combining an achiral pentamethylcyclopentadienyl (Cp*)–iridium complex with a chiral phosphoric acid affords a catalyst that allows for highly enantioselective hydrogenation of imines derived from aryl ketones, as well as those derived from aliphatic ones, with ee values varying from 81 to 98 %. A range of achiral iridium complexes containing diamine ligands were examined, for which the ligands were shown to have a profound effect on the reaction rate, enantioselectivity and catalyst deactivation. The chiral phosphoric acid is no less important, inducing enantioselection in the hydrogenation. The induction occurs, however, at the expense of the reaction rate.  相似文献   

10.
The first highly enantioselective Brønsted acid catalyzed intramolecular hydroamination of alkenes enables the efficient construction of a series of chiral (spirocyclic) pyrrolidines with an α‐tetrasubstituted carbon stereocenter with excellent functional group tolerance. A unique feature of this strategy is the use of a thiourea group acting as both the activating and the directing group through cooperative multiple hydrogen bonding with a Brønsted acid and the double bond. The utility of this method is highlighted by the facile construction of chiral synthetic intermediates and important structural motifs that are widely found in organic synthesis.  相似文献   

11.
A new chiral Brønsted acid, generated in situ from a chiral phosphoric acid boron (CPAB) complex and water, was successfully applied to asymmetric indole reduction. This “designer acid catalyst”, which is more acidic than TsOH as suggested by DFT calculations, allows the unprecedented direct asymmetric reduction of C2‐aryl‐substituted N‐unprotected indoles and features good to excellent enantioselectivities with broad functional group tolerance. DFT calculations and mechanistic experiments indicates that this reaction undergoes C3‐protonation and hydride‐transfer processes. Besides, bulky C2‐alkyl‐substituted N‐unprotected indoles are also suitable for this system.  相似文献   

12.
An enriching experience : Chiral phosphoric acids have been used to catalyze the title transformation for aromatic and aliphatic hemiaminal ethers. The process affords the corresponding products in good to high enantioselectivity (see scheme; Boc=tert‐butoxycarbonyl, G=aromatic group). The method enables facile access to highly enantioenriched 1,3‐diamine derivatives.

  相似文献   


13.
Hydrogenation catalysts involving abundant base metals such as cobalt or iron are promising alternatives to precious metal systems. Despite rapid progress in this field, base metal catalysts do not yet achieve the activity and selectivity levels of their precious metal counterparts. Rational improvement of base metal complexes is facilitated by detailed knowledge about their mechanisms and selectivity‐determining factors. The mechanism for asymmetric imine hydrogenation with Knölker’s iron complex in the presence of chiral phosphoric acids is here investigated computationally at the DFT‐D level of theory, with models of up to 160 atoms. The resting state of the system is found to be an adduct between the iron complex and the deprotonated acid. Rate‐limiting H2 splitting is followed by a stepwise hydrogenation mechanism, in which the phosphoric acid acts as the proton donor. C?H ??? O interactions between the phosphoric acid and the substrate are involved in the stereocontrol at the final hydride transfer step. Computed enantiomeric ratios show excellent agreement with experimental values, indicating that DFT‐D is able to correctly capture the selectivity‐determining interactions of this system.  相似文献   

14.
A cooperative catalytic system established by the combination of an iron salt and a chiral Brønsted acid has proven to be effective in the asymmetric Friedel–Crafts alkylation of indoles with β‐aryl α′‐hydroxy enones. Good to excellent yields and enatioselectivities were observed for a variety of α′‐hydroxy enones and indoles, particularly for the β‐aryl α′‐hydroxy enones bearing an electron‐withdrawing group at the para position of the phenyl ring (up to 90 % yield and 91 % ee). The proton of the chiral Brønsted acid, the Lewis acid activation site, as well as the inherent basic site for the hydrogen‐bonding interaction of the Brønsted acid are responsible for the high catalytic activities and enantioselectivities of the title reaction. A possible reaction mechanism was proposed. The key catalytic species in the catalytic system, the phosphate salt of FeIII, which was thought to be responsible for the high activity and good enantioselectivity, was then confirmed by ESIMS studies.  相似文献   

15.
16.
17.
The highly enantioselective conjugate addition of enamides and enecarbamates to in situ‐generated ortho‐quinone methides, upon subsequent N,O‐acetalization, gives rise to acetamido‐substituted tetrahydroxanthenes with generally excellent enantio‐ and diastereoselectivities. A chiral BINOL‐based phosphoric acid catalyst controls the enantioselectivity of the carbon–carbon bond‐forming event. The products are readily converted into other xanthene‐based heterocycles.  相似文献   

18.
19.
A Brønsted acid enabled nickel‐catalyzed hydroalkenylation of aldehydes and styrene derivatives has been developed. The Brønsted acid acts as a proton shuttle to transfer a proton from the alkene to the aldehyde, thereby leading to an economical and byproduct‐free coupling. A series of synthetically useful allylic alcohols were obtained through one‐step reactions from readily available styrene derivatives and aliphatic aldehydes in up to 88 % yield and with high linear selectivity.  相似文献   

20.
The formal [3+2] cycloaddition of epoxides and unsaturated compounds is a powerful methodology for the synthesis of densely functionalized five‐membered heterocyclic compounds containing oxygen. Described is a novel enantioselective formal [3+2] cycloaddition of epoxides under Brønsted base catalysis. The bis(guanidino)iminophosphorane as a chiral organosuperbase catalyst enabled the enantioselective reaction of β,γ‐epoxysulfones with imines, owing to its strong basicity and high stereocontrolling ability, to provide enantioenriched 1,3‐oxazolidines having two stereogenic centers, including a quaternary one, in a highly diastereo‐ and enantioselective manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号