首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copper‐catalyzed sequential hydroboration of terminal alkynes with pinacolborane to prepare 1,1‐diborylalkanes directly from alkynes was studied. Protected propargyl amines, propargyl alcohol derivatives, and simple alkynes regioselectively produced the desired 1,1‐diborylalkanes in good yields with a copper/xantphos catalyst.  相似文献   

2.
A regioselective double 1,1‐hydrosilylation of terminal aliphatic alkynes with primary silanes catalyzed by one cobalt catalyst has been developed. gem‐Bis(dihydrosilyl)alkanes containing four silicon‐hydrogen bonds are efficiently constructed in an atom‐economical manner. Tolerated substrates include simplest alkyne‐ethyne, a complicated drug derivative and various functionalized terminal aliphatic alkynes. Asymmetric approach using two catalysts is achieved with excellent enantioselectivities to access corresponding chiral products. The transformations of Si—H bonds into Si—C, Si—O, and Si—F bonds and the synthesis of enantioriched α‐hydroxysilane show synthetic utility.  相似文献   

3.
The reaction of secondary homopropargylamines, isocyanides, and water in the presence of a catalytic amount of silver acetate and subsequent purification by chromatography on silica gel afforded substituted proline amides in good to excellent yields. Primary homopropargylamines underwent a cyclizative Ugi–Joullié three‐component reaction with isocyanides and carboxylic acids to afford functionalized N‐acyl proline amides. High diastereoselectivity was observed in the synthesis of 4‐alkoxy and 4,5‐disubstituted proline derivatives. This work represents the first examples of a three‐component cyclizative 1,1‐aminoacylation of terminal alkynes.  相似文献   

4.
We report the highly diastereo‐ and enantioselective preparation of (E)‐δ‐boryl‐substituted anti‐homoallylic alcohols in two steps from terminal alkynes. This method consists of a cobalt(II)‐catalyzed 1,1‐diboration reaction of terminal alkynes with B2pin2 and a palladium(I)‐mediated asymmetric allylation reaction of the resulting 1,1‐di(boryl)alk‐1‐enes with aldehydes in the presence of a chiral phosphoric acid. Propyne, which is produced as the byproduct during petroleum refining, could be used as the starting material to construct homoallylic alcohols that are otherwise difficult to synthesize with high stereocontrol.  相似文献   

5.
A base‐catalyzed reaction that enables stereoselective 1,1‐silaboration of terminal alkynes is described. This method not only offers a new strategy to functionalize simple and readily accessible alkynes beyond 1,2‐difunctionalization, but also provides an unconventional atom‐ and step‐economical approach to rapidly and reliably access versatile geminal silylboranes in the absence of transition metals and with exquisite stereoselectivity.  相似文献   

6.
A one‐pot synthesis of functionalized thiopyran derivatives via a Cu‐catalyzed multicomponent reaction of sulfonyl azides, arylacetylenes and dipotassium 2,2‐dicyanoethylene‐1,1‐dithiolate, generated from malononitrile and CS2, has been developed. When alkylacetylenes were used as the terminal alkynes, N‐(alkanethioyl)‐N‐(2,2‐dicyanoethanethioyl)methanesulfonamides were obtained in good yields.  相似文献   

7.
Direct radical additions to terminal alkynes have been widely employed in organic synthesis, providing credible access to the anti‐Markovnikov products. Because of the Kharasch effect, regioselective control for the formation of Markovnikov products still remains a great challenge. Herein, we develop a transition‐metal‐free, visible light‐mediated radical addition of S‐nucleophiles to terminal alkynes, furnishing a wide array of α‐substituted vinyl sulfones with exclusive Markovnikov regioselectivity. Mechanistic investigations demonstrated that radical/radical cross‐coupling might be the key step in this transformation. This radical Markovnikov addition protocol also provides an opportunity to facilitate the synthesis of other valuable α‐substituted vinyl compounds.  相似文献   

8.
A cobalt‐catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R′CH?CH2, in the presence of zinc and water to give functionalized trans‐disubstituted alkenes, RCH?CHCH2CH2R′, is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl2/P(OMe)3/Zn catalyst system to afford 1,2‐trans‐disubstituted alkenes with high regio‐ and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl2/P(OPh)3/Zn system providing a mixture of 1,2‐trans‐ and 1,1‐disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3‐enynes and acetylene gas with alkenes. Furthermore, a phosphine‐free cobalt‐catalyzed reductive coupling of terminal alkynes with enones, affording 1,2‐trans‐disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air‐stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

9.
An iron‐catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis‐1,2‐diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron‐catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates.  相似文献   

10.
The first successful example of a visible‐light‐induced copper‐catalyzed process for C? H annulation of arylamines with terminal alkynes and benzoquinone is described. This three‐component reaction allows use of a variety of commercial terminal alkynes as coupling partners for the one‐step regioselective synthesis of functionalized indoles. Moreover, the current process represents a sustainable and atom‐economical approach for the preparation of complex indoles from easily accessible starting materials under visible‐light irradiation, without the need for expensive metals and harsh reaction conditions.  相似文献   

11.
A mild and general alkylation of terminal alkynes with transient σ‐alkylpalladium(II) complexes for assembling alkyl‐substituted alkynes is described. This method represents a new way to the use of transient σ‐alkylpalladium(II) complexes in organic synthesis through 1,2‐carboalkynylation of alkenes.  相似文献   

12.
The first successful example of a visible‐light‐induced copper‐catalyzed process for C H annulation of arylamines with terminal alkynes and benzoquinone is described. This three‐component reaction allows use of a variety of commercial terminal alkynes as coupling partners for the one‐step regioselective synthesis of functionalized indoles. Moreover, the current process represents a sustainable and atom‐economical approach for the preparation of complex indoles from easily accessible starting materials under visible‐light irradiation, without the need for expensive metals and harsh reaction conditions.  相似文献   

13.
A one‐pot synthesis of functionalized sulfonyl‐yn‐imines via a Cu‐catalyzed tandem reaction of sodium arylsulfinates, trichloroacetonitrile, and terminal alkynes has been developed.  相似文献   

14.
A new cross‐coupling reaction of N‐benzylic sulfonamides with terminal alkynes for the synthesis of internal alkynes is reported. In the presence of 5 mol% of (Tf)2NH/Bi(OTf)3 (1:1), a broad range of N‐benzylic sulfonamides react smoothly with arylacetylenes to afford structurally diverse internal alkynes in moderate to excellent yields. We reasoned that vinyl cations could be formed by the regioselective attack of terminal alkynes with benzyl cations generated in situ from N‐benzylic sulfonamides under acidic conditions, which then eliminated to form a carbon‐carbon triple bond.  相似文献   

15.
A new, efficient and green protocol for the nano‐Cu2O‐catalyzed homo‐coupling reaction of terminal alkynes has been developed, using water/ionic liquid as an environmentally friendly solvent. Moreover, the system also allows the synthesis of unsymmetric 1,3‐diynes by cross‐coupling of two different terminal alkynes. It is noteworthy that the nano‐Cu2O‐catalyzed methodology is a good supplement to copper catalyst for the Glaser‐type homo‐coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The on‐surface coupling reactions of terminal alkynes catalyzed by exogenous cupric ions on chemically inert highly oriented pyrolytic graphite (HOPG) surface have been investigated by scanning tunnelling microscopy. In the presence of exogenous cupric ions, diyne‐linked nanostructures generated via homocoupling of terminal alkynes are the exclusive products, whereas no coupling reaction occurs for the terminal alkynes on the surface in the absence of the cupric ions, suggesting that exogenous cupric ions are efficient to catalyze the highly chemoselective on‐surface reaction of terminal alkynes. The HOPG surface displays a template effect to the growth and alignment of the products on the surface. As a result, 2D arrays of diyne‐linked zigzag polymers and 2D diyne‐linked porous polymers are fabricated from ditopic monomer 3,6‐diethynylcarbazole and tritopic monomer 1,3,5‐tris‐(4‐ethynylphenyl) benzene, respectively. This synthetic strategy combining the high selectivity of cupric ion catalyst as well as the template effect of on‐surface synthesis approach could be a general strategy to fabricate diyne‐linked nanostructures and nanomaterials on solid surfaces.  相似文献   

17.
A highly E‐selective cross‐dimerization of terminal alkynes with either terminal silylacetylenes, tert‐butylacetylene, or 1‐trimethylsilyloxy‐1,1‐diphenyl‐2‐propyne in the presence of a dichlorocobalt(II) complex bearing a sterically demanding 2,9‐bis(2,4,6‐triisopropylphenyl)‐1,10‐phenanthroline, activated with two equivalents of EtMgBr, gives a variety of (E)‐1,3‐enynes. A well‐characterized diolefin/cobalt(0) complex, with divinyltetramethyldisiloxane, acted as a catalytically active species without any activation, clearly indicating that a cobalt(0) species is involved in the catalytic cycle.  相似文献   

18.
A novel approach for the synthesis of pyrrole derivatives has been reported. The reactions starting from terminal alkynes, carbodiimides, and malononitrile using CuI, DBU, and TBPAc in anhydrous MeCN afforded the functionalized pyrroles in acceptable yields. Alkyl‐, aryl‐, and heteroaromatic terminal alkynes were tolerated. Carbodiimides could be symmetrical and unsymmetrical substrates with aryl or alkyl substituents. The reaction exhibited a good regioselectivity when unsymmetrical carbodiimides were employed.  相似文献   

19.
The synthesis of phosphinoboronate esters containing a single P? B bond is reported, together with preliminary reactivity studies towards a range of organic substrates. These compounds add readily to aldehydes, ketones, aldimines, and α,β‐unsaturated enones to give primarily the corresponding 1,2‐addition products containing a new P? C bond. The first examples of transition‐metal‐catalyzed phosphinoborations of C‐C multiple bonds in which P? C and B? C bonds are formed in a single step are also disclosed; allenes react by a highly regioselective 1,2‐addition whereas terminal alkynes undergo a formal 1,1‐addition.  相似文献   

20.
An easy and versatile Cu‐catalyzed propargylic substitution process is presented. Using easily prepared prochiral dichloro substrates, readily available Grignard reagents together with catalytic amount of copper salt and chiral ligand, we accessed a range of synthetically interesting trisubstituted chloroallenes. Substrate scope and nucleophile scope are broad, providing generally high enantioselectivity for the desired 1,3‐substitution products. The enantioenriched chloroallenes could be further transformed into the corresponding trisubstituted allenes or terminal alkynes bearing all‐carbon quaternary stereogenic centers, through the copper‐catalyzed enantiospecific 1,1/1,3‐substitutions. The two successive copper‐catalyzed reactions could be eventually combined into a one‐pot procedure and different desired allenes or alkynes were obtained respectively with high enantiomeric excesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号