首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ru(II) complexes of the general formula [RuCl2(′′)(L)] (1: ′N = Nb, L = MeOH; 2: ′N = Nb, L = CH3CN; 3: ′N = Nd, L = CH3CN; 4: ′N = Np, L = CH3CN), [Ru(p‐cymene)(a–b)Cl]Cl (5a: N Na = 2,2′‐bipyridine; 5b: N Nb = 4,4′‐dimethyl–2,2′‐bipyridine), [Ru(′′)(a–b)Cl]Cl (6a: ′N = Nb, a = 2,2′‐bipyridine; 6b: ′N = Nb, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 7a: ′N = Nd, a = 2,2′‐bipyridine; 7b: ′N = Nd, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 8a: ′N = Np, a = 2,2′‐bipyridine; 8b: ′N = Np, b = 4,4′‐dimethyl‐2,2′‐bipyridine) and [Ru(′′)(a)Cl]BF4 (9a: ′N = Nb; a = 2,2′‐bipyridine) were synthesized from the corresponding [RuCl2(p‐cymene)]2 dimer, ′′ and a–b ligands. The compounds were characterized by elemental analysis, IR and NMR. Complex 9a was studied by X‐ray diffraction, confirming its cationic‐mononuclear [RuCl(bb)(a)]+ nature. The synthesized Ru(II) complexes (1–8) were employed as catalysts for the transfer hydrogenation of ketones to secondary alcohols in the presence of KOH using 2‐propanol as a hydrogen source at 82°C. The rates of the transfer hydrogenation reactions strongly depended on the type of and ancillary ligands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In the search for antitumor active metal complexes several ruthenium complexes have been reported to be promising. A series of mononuclear Ru(II) complexes, [Ru(T)2(S)]2+, where T?=?2,2′-bipyridine/1,10-phenanthroline and S?=?CH3-bitsz, Cl-bitsz, Br-bitsz, tmtsz, dmtsz, have been prepared and characterized by UV-Vis, IR, 1H-NMR, FAB-mass spectroscopy, and elemental analysis. The complexes were subjected to in vivo anticancer activity against a transplantable murine tumor cell line Ehrlich's ascitic carcinoma (EAC) and in vitro cytotoxic activity against human cancer cell line Molt 4/C8, CEM, and murine tumor cell line L1210. Ruthenium complexes showed promising biological activity especially in decreasing tumor volume and viable ascitic cell counts. Treatment with these complexes prolonged the life span of EAC-tumor-bearing mice by 10–48%. In vitro evaluation of these ruthenium complexes revealed cytotoxic activity from 0.21 to 24?µmol?L?1 against Molt 4/C8, 0.16–19?µmol?L?1 against CEM, and 0.75–32?µmol?L?1 against L1210 cell proliferation, depending on the nature of the compound.  相似文献   

3.
A group of a diverse family of dinuclear copper(II) complexes derived from pyrazole‐containing tridentate N2O ligands, 1,3‐bis(3,5‐dimethylpyrazol‐1‐yl)propan‐2‐ol (Hdmpzpo), 1,3‐bis(3‐phenyl‐5‐methyl pyrazol‐1‐yl)propan‐2‐ol (Hpmpzpo) and 1,3‐bis(3‐cumyl‐5‐methylpyrazol‐1‐yl)propan‐2‐ol (Hcmpzpo), were synthesized and characterized by elemental analysis, IR spectroscopy and three of them also by single‐crystal X‐ray diffraction. Three complexes, [Cu2(pmpzpo)2](NO3)2·2CH3OH ( 3 ·2CH3OH), [Cu2(pmpzpo)2](ClO4)2 ( 4 ) and [Cu2(cmpzpo)2](ClO4)2·2DMF ( 7 ·2DMF), each exhibits a dimeric structure with a inversion center being located between the two copper atoms. The metal ion is coordinated in a distorted square planar environment by two pyrazole nitrogen atoms and two bridging alkoxo oxygen atoms. Both complexes 1 ·CH3OH·H2O and 3 ·2CH3OH were investigated in anaerobic conditions for the catalytic oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ), for modeling the functional properties of catechol oxidase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
DNA-binding and DNA-photocleavage properties of two Ru(II) complexes, [Ru(L1)(dppz)2](PF6)4 (1) and [Ru(L2)(dppz)2](PF6)4 (2) (L1 = 5,5′-di(1-(triethylammonio)methyl)-2,2′-dipyridyl cation; L2 = 5,5′-di(1-(tributylammonio)methyl)-2,2′-dipyridyl cation; dppz = dipyrido[3,2-a:2′,3′-c]phenazine, have been investigated. Experimental results show that the DNA-binding affinity of complex 1 is greater than that of 2, both complexes emit luminescence in aqueous solution, either alone or in the presence of DNA, complex 1 can bind to DNA in an intercalative mode while 2 most likely interacts with DNA in a partial intercalation fashion, and complex 2 serves as a better candidate for enantioselective binding to CT-DNA compared with 1. Moreover, complex 1 reveals higher efficient DNA cleavage activity than 2, during which supercoiled DNA is converted to nicked DNA with both complexes. Theoretical calculations for the two complexes have been carried out applying the density functional theory (DFT) method at the level of the B3LYP/LanL2DZ basis set. The calculated results can reasonably explain the obtained experimental trends in the DNA-binding affinities and binding constants (Kb) of these complexes.  相似文献   

5.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Cu(II) complexes of three bis(pyrrol-2-yl-methyleneamine) ligands were synthesized and characterized by elemental analyses, mass spectra, and IR spectra. X-ray diffraction analysis shows that [CuL3]2 is a dinuclear complex with an extremely distorted square-planar geometry. Furthermore, the antioxidant activities of the compounds have been investigated. The electrochemical properties of the Cu(II) complexes have also been studied by cyclic voltammetry. The Cu(II) complexes show similar superoxide dismutase (SOD) activity compared with that of the native Cu, Zn-SOD.  相似文献   

7.
Three novel compounds, (η6‐p‐cymene)RuCl2(2‐fluoro‐5‐aminopyridine) (compound 1), (η6‐p‐cymene)RuCl2(5‐amino‐2‐chlorpyridine) (compound 2) and (η6‐p‐cymene)RuCl2(2‐bromo‐ 5‐aminopyridine) (compound 3), were synthesized and characterized. The compound 1 and 3 were determined by X‐ray diffraction, showing a distorted piano‐stool type of geometry with similar bond lengths and angles around the ruthenium. Compound 2 exhibited moderate in vitro activity against A549 and MCF‐7 human cancer cells, the other two lower activities. The UV–vis and fluorescent absorption titrations showed that three compounds binded with CT‐DNA in a minor groove. The intrinsic binding constants (Kb) were calculated to be 2.13(±0.03) × 105 M?1, 2.89(±0.03) × 105 M?1 and 2.45(±0.03) × 105 M?1 for compound 1, 2 and 3, respectively, by using UV–vis absorption titrations data. Among the three compound, the highest value of intrinsic binding constant of compound 2 was consistent with its highest cytoxicity against A549 and MCF‐7 human cancer cells in vitro.  相似文献   

8.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Pentagonal-bipyramidal isothiocyanato Co(II) and Ni(II) complexes with condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized and characterized by elemental analyses, IR and UV–vis spectra, molar conductivity, and magnetic susceptibility. Crystal structures of the Co(II) and Ni(II) complexes were also determined. Antimicrobial activities of the ligand and metal complexes were examined.  相似文献   

10.
A new series of twelve bidentate Schiff's base ligands (HL1–12) was synthesized via condensation of 5‐(arylazo)salicylaldehydes with aromatic amines. When the new salicylaldimine derivatives were reacted with copper(II) chloride, the neutral complexes Cu(L1–12)2 were obtained. The structure of the copper complexes was established from microanalyses, IR and UV spectra and thermal analyses. The results suggested that the ligands were coordinated to the metal ion in a bidentate manner with ON donor sites of the deprotonated phenolic‐OH and azomethine‐N. The composition of the complexes can be represented as CuL2. Evaluation of antimicrobial activity for the synthesized compounds was carried out to probe their activity. The compounds were found to have weak antimicrobial activity.  相似文献   

11.
A ligand ipdp (ipdp?=?indeno[1′,2′?:?5,6]pyrazino[2,3-i]dipyrido[3,2-a?:?2′,3′-c]phenazine-8-one) and its ruthenium complexes, [Ru(L)2(ipdp)]2+ (L?=?bpy (2,2′-bipyridine), phen (1,10-phenanthroline)), have been synthesized and characterized by elemental analysis, electrospray mass spectra, and 1H NMR. The interaction between the complexes and calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods and viscosity measurements. The results indicate that the complexes can bind to CT-DNA in an intercalative mode. In addition, both complexes promote the photocleavage of plasmid pBR322 DNA under irradiation. The mechanistic studies reveal that singlet oxygen 1O2 plays a significant role in DNA photocleavage.  相似文献   

12.
The synthesis, spectral characterization, and biological studies of ruthenium(II) hydrazone complexes [RuCl(CO)(PPh3)2L] (where L = hydrazone ligands) have been carried out. The hydrazones are monobasic bidentate ligands with O and N as the donors and are preferably found in the enol form in all the complexes. The molecular structure of the ligands HL1, HL2, and HL3 were determined by single-crystal X-ray diffraction. The DNA binding studies of the ligands and complexes were carried out by absorption spectroscopic and viscosity measurements. The results revealed that the ligands and complexes bind to DNA via intercalation. The DNA cleavage activity of the complexes, evaluated by gel electrophoresis assay, revealed that the complexes are good DNA cleaving agents. The antioxidant properties of the complexes were evaluated against DPPH, OH, and NO radicals, which showed that the complexes have strong radical-scavenging. Further, the in vitro cytotoxic effect of the complexes examined on HeLa and MCF-7 cancer cell lines showed that the complexes exhibited significant anticancer activity.  相似文献   

13.
Three novel copper(II) complexes, [Cu(Gly‐l ‐Val)(HPBM)(H2O)]·ClO4·H2O ( 1 ), [Cu(Gly‐l ‐Val)(TBZ)(H2O)]·ClO4 ( 2 ) and [Cu(Gly‐l ‐Val)(PBO)(H2O)]·ClO4 ( 3 ) (Gly‐l ‐Val = glycyl‐l ‐valine anion, HPBM = 5‐methyl‐2‐(2′‐pyridyl)benzimidazole, TBZ = 2‐(4′‐thiazolyl)benzimidazole, PBO = 2‐(2′‐pyridyl)benzoxazole), have been prepared and characterized with elemental analyses, conductivity measurements as well as various spectroscopic techniques. The interactions of these copper complexes with calf thymus DNA were explored using UV–visible, fluorescence, circular dichroism, thermal denaturation, viscosity and docking analyses methods. The experimental results showed that all three complexes could bind to DNA via an intercalative mode. Moreover, the cytotoxic effects were evaluated using the MTT method, and the antimicrobial activity of these complexes was tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results showed that the activities are consistent with their DNA binding abilities, following the order of 1 > 2 > 3 .  相似文献   

14.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

15.
Three new dinuclear Cu(II) complexes with the formulas [Cu2(pxdmbtacn)Cl4] ( 1 ), [Cu2(pxdmbtacn)Cl0.7(NO3)1.3(OH)2(H2O)1.3]?6H2O ( 2 ) and [Cu2(pxdiprbtacn)Cl4] ( 3 ) together with one previously reported complex, [Cu2(pxbtacn)Cl4] ( 4 ), were obtained from Cu(II) salts with three p‐xylylene‐bridged bis‐tacn ligands bearing pendant alkyl substituents or without pendant group. Complex 2 was structurally characterized as a centrosymmetric dinuclear molecule with each metal center being coordinated to some labile ligands in addition to one tacn ring. Based on the results of mass spectrometry and UV–visible spectroscopy, complexes 1 and 3 are capable of existing in aqueous solution as dinuclear species but 4 can partially form a dimer of the original dinuclear motif. Complexes 1 , 3 and 4 can all effectively cleave supercoiled DNA oxidatively in the presence of hydrogen peroxide. The superoxide dismutase (SOD) activities of 1 and 3 measured under physiological conditions are comparable to that of the native CuZnSOD enzyme but the enzymatic activity of 4 is about three‐ to fourfold lower. Furthermore, complexes 1 , 3 and 4 demonstrate moderate scavenging effect on hydrogen peroxide and their catalase activities are in the decreasing order of 3 > 1 > 4 .  相似文献   

16.
Two mononuclear copper(II) complexes with pyrazole derivatives, 1,1′-(anthracen-9-ylmethylene)bis(1H-pyrazole) (L1 ) and 9-(4-(di(1H-pyrazol-1-yl)methyl)phenyl)-9H-carbazole (L2 ), of formulae [CuL1(CH3CN)2](ClO4)2 (1) and [CuL2(CH3CN)2](ClO4)2 (2) were prepared. Both complexes were confirmed by IR, MS, 1H NMR, and elemental analyses. Complex 1 was also characterized by X-ray crystallography, confirming that copper(II) is coordinated by four nitrogen atoms from two L1 and two oxygen atoms from two perchlorates. Furthermore, all ligands and complexes were tested in vitro for their antitumor activities using mouse melanoma cell line B16-F10, HepG2 human hepatoma cell line, and A549 human lung adenocarcinoma cell line. Both complexes displayed potent cytotoxicity and are promising substrates for further investigations.  相似文献   

17.
A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.  相似文献   

18.
Isothiocyanate complexes of Zn(II) and Cd(II) with the condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized, characterized, and their antimicrobial activities were evaluated. The structures of the complexes were determined by elemental analysis, IR, and NMR spectroscopy. The crystal structure of the Zn(II) complex was also determined. Quantum-chemical calculations of the geometry and total energy of isomers of 2,6-diacetylpyridine-bis(trimethylammoniumacetohydrazone) were performed in vacuum and methanol solution, with the aim to explain conformational behavior and E/Z isomerism of this compound. DFT calculations of the molecular structures and the relative stabilities of linkage isomers of the Cd(II) complex showed that the isomer with N–Cd–N coordination of SCN? is the most stable. Complexes of Zn(II) and Cd(II) exhibited low to moderate activity against the tested microbial strains.  相似文献   

19.
Three Ru complexes coordinated by oxfloxacin, [Ru(L)2(OFX)]Cl·2H2O (L = bpy, 1; dmbpy, 2; phen, 3; and OFX = ofloxacin), were synthesized and characterized. These complexes can inhibit the growth of cervical cancer HeLa cells efficiently. Furthermore, these three complexes exhibited excellent binding affinities with DNA, as confirmed by spectroscopy methods and viscosity experiments. Therefore, the synthesized Ru(II) complexes have excellent DNA-binding abilities with potential applications in cancer chemotherapy.  相似文献   

20.
Two new complexes, [Ni(HL1)(N3)(μ1,1N3)]2 (1) [HL1: NC5H4CH3C=NNH (C=O) NH2] and [Ni(L2)N3] (2) [HL2: NC5H4HC=N NH(C=S)NH2], have been synthesized by reaction of Ni(OAC)2·4H2O and sodium azide with HL1 and HL2 and characterized by elemental analysis, FT-IR, and UV–vis spectral studies. Single-crystal X-ray diffraction reveals that 1 is dinuclear with nickel(II) in an octahedral environment of NNO donors of HL1, two nitrogens of azide bridges and one nitrogen of terminal azide; 2 is mononuclear containing nickel(II) in a distorted square-planar environment of NNS donors of HL2 and one terminal azide. The structures of 1 and 2 have been optimized by density functional theory. The results of antimicrobial activities of ligands, 1 and 2 demonstrated that HL2 and 2 have good antimicrobial activity in contrast with HL1 and 1, related to the presence of sulfur donor in HL2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号