共查询到20条相似文献,搜索用时 0 毫秒
1.
The palladium(II)‐coordinated 5,10,15,20‐tetrakis‐(4‐hexyloxyphenyl)‐porphyrin as a macrocyclic palladium complex was covalently grafted to the surface of graphene oxide (denoted as GO‐CPTMS@Pd‐TKHPP). GO‐CPTMS@Pd‐TKHPP was characterized using microscopic and spectroscopic techniques for confirmation of functionalization. The synthesized catalyst was checked in the Suzuki‐Miyaura and the Mizoroki‐Heck coupling reactions. The catalyst is very easy to handle, environmentally safe and economical. Also, this catalytic system shows high catalytic activity and the yields of the products are excellent. Moreover, the suggested catalyst was reusable for five runs with no significant decrease in catalytic activity. 相似文献
2.
An improved and eco‐friendly procedure has been developed to generate mesoporous silica‐supported palladium nanoparticles (SiO2@PdNP) that could be used as a sustainable heterogeneous Pd catalyst for phosphine‐free Suzuki–Miyaura and Heck coupling reactions with excellent turnover number and turnover frequency. The presence of Pd on the silica surface was detected by X‐ray diffraction and the structural morphology of SiO2@PdNP was obtained by transmission electron microscopy. The heterogeneous catalytic system is recyclable and leaching of the metal after the reaction is not apparently observed. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
Manjunatha Kempasiddhaiah Vishal Kandathil Ramesh B. Dateer Balappa S. Sasidhar Shivaputra A. Patil Siddappa A. Patil 《应用有机金属化学》2019,33(5)
In this paper, a highly active, air‐ and moisture‐stable and easily recoverable magnetic nanoparticles tethered mesoionic carbene palladium (II) complex (MNPs‐MIC‐Pd) as nanomagnetic catalyst was successfully synthesized by a simplistic multistep synthesis under aerobic conditions using commercially available inexpensive chemicals for the first time. The synthesized MNPs‐MIC‐Pd nanomagnetic catalyst was in‐depth characterized by numerous physicochemical techniques such as FT‐IR, ICP‐AES, FESEM, EDS, TEM, p‐XRD, XPS, TGA and BET surface area analysis. The prepared MNPs‐MIC‐Pd nanomagnetic catalyst was used to catalyze the Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions and exhibited excellent catalytic activity for various substrates under mild reaction conditions. Moreover, MNPs‐MIC‐Pd nanomagnetic catalyst could be easily and rapidly recovered by applying an external magnet. The recovered MNPs‐MIC‐Pd nanomagnetic catalyst exhibited very good catalytic activity up to ten times in Suzuki–Miyaura and five times in Mizoroki–Heck cross‐coupling reactions without considerable loss of its catalytic activity. However, MNPs‐MIC‐Pd nanomagnetic catalyst shows notable advantages such as heterogeneous nature, efficient catalytic activity, mild reaction conditions, easy magnetic work up and recyclability. 相似文献
4.
Pd(II) salen complex covalently anchored to multi‐walled carbon nanotubes as a heterogeneous and reusable precatalyst for Mizoroki–Heck and Hiyama cross‐coupling reactions 下载免费PDF全文
A Pd(II) salen complex anchored to multi‐walled carbon nanotubes showed excellent catalytic activity and stability for the Mizoroki–Heck and Hiyama cross‐couplings of aryl halides with olefins and phenylsiloxanes. Furthermore, the heterogeneous catalyst could be reused up to four times with the catalytic activity being recovered easily after simple manipulations. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
Daniel Canseco‐Gonzalez Dr. Andrzej Gniewek Michal Szulmanowicz Dr. Helge Müller‐Bunz Prof. Dr. Anna M. Trzeciak Prof. Dr. Martin Albrecht 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(19):6055-6062
A series of PEPPSI‐type palladium(II) complexes was synthesized that contain 3‐chloropyridine as an easily removable ligand and a triazolylidene as a strongly donating mesoionic spectator ligand. Catalytic tests in Suzuki–Miyaura cross‐coupling reactions revealed the activity of these complexes towards aryl bromides and aryl chlorides at moderate temperatures (50 °C). However, the impact of steric shielding was the inverse of that observed with related normal Nheterocyclic carbenes (imidazol‐2‐ylidenes) and sterically congested mesityl substituents induced lower activity than small alkyl groups. Mechanistic investigations, including mercury poisoning experiments, TEM analyses, and ESI mass spectrometry, provide evidence for ligand dissociation and the formation of nanoparticles as a catalyst resting state. These heterogeneous particles provide a reservoir for soluble palladium atoms or clusters as operationally homogeneous catalysts for the arylation of aryl halides. Clearly, the substitution of a normal N‐heterocyclic carbene for a more basic triazolylidene ligand in the precatalyst has a profound impact on the mode of action of the catalytic system. 相似文献
6.
Pd(II) complexes of Schiff bases and their application as catalysts in Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions 下载免费PDF全文
Schiff bases of 2‐(phenylthio)aniline, (C6H5)SC6H4N?CR (R = (o‐CH3)(C6H5), (o‐OCH3)(C6H5) or (o‐CF3)(C6H5)), and their palladium complexes (PdLCl2) were synthesized. The compounds were characterized using 1H NMR and 13C NMR spectroscopy and micro analysis. Also, electrochemical properties of the ligands and Pd(II) complexes were investigated in dimethylformamide–LiClO4 solution with cyclic and square wave voltammetry techniques. The Pd(II) complexes showed both reversible and quasi‐reversible processes in the ?1.5 to 0.3 V potential range. The synthesized Pd(II) complexes were evaluated as catalysts in Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
《应用有机金属化学》2017,31(4)
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis. 相似文献
8.
A stable and powerful heterogeneous palladium catalyst was synthesized using immobilized palladium on (S)‐methyl histidinate bonded onto the surface of multi‐walled carbon nanotubes. The catalyst was characterized using a combination of Fourier transform infrared and X‐ray photoelectron spectroscopies, transmission electron microscopy, X‐ray powder diffraction and inductively coupled plasma, thermogravimetric and elemental analyses. This new air‐ and moisture‐stable phosphine‐free palladium catalyst was found to be highly active and reusable in Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions in poly(ethylene glycol) and aqueous ethanol as green solvents using an extremely small amount of palladium under mild conditions. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
Porous carbon (PC) material was prepared from the carbonization of pomegranate peel waste. Subsequently, magnetically separable Fe3O4@PC was synthesized from Fe3O4 nanoparticles decorated on PC by the co‐precipitation method of iron ions. Finally, Fe3O4@PC was successfully decorated with palladium nanoparticles in a simple route by reducing H2PdCl4 in the presence of sodium dodecylsulfate, which was used as both surfactant and reducing agent. Additionally, the effect of temperature on the carbonization process was studied. The Pd/Fe3O4@PC nanocomposite was used as an efficient and heterogeneous catalyst for Suzuki–Miyaura and Sonogashira cross‐coupling reactions in an environmentally friendly medium. 相似文献
10.
A novel palladium catalyst immobilized on polyacrylonitrile fiber mats (Pd/PAN) was prepared by electrospinning. The catalytic activity and recyclability of the microwave‐assisted Pd/PAN fiber mats were examined for the Mizoroki–Heck cross‐coupling of aryl iodides with three different acrylates in aqueous solution. The morphology of the prepared Pd/PAN fiber mats was characterized by scanning electron microscopy. The large size of the PAN fiber mat‐supported palladium catalyst enables much easier separation from the reaction mixture by simple filtration. Density functional theory calculation indicates that the chelation energy of palladium chloride (PdCl2) with propionitrile (model of PAN) is considerable smaller than that of PdCl2 with water, suggesting that the stability and reactivity of the Pd/PAN fiber mats catalyst could be improved through the surface derivatization with polar functional groups. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
《应用有机金属化学》2017,31(6)
A novel heterogeneous Pd catalyst was synthesized by anchoring Pd(II) onto 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine‐coated Fe3O4 (FMNPs@TPy‐Pd). This catalyst has been demonstrated for the first time as a recoverable and reusable heterogeneous nanocatalyst in Suzuki and Heck cross‐coupling reactions. The catalyst is very easy to handle and is environmentally safe and economical. FMNPs@TPy‐Pd was characterized using transmission and scanning electron microscopies, X‐ray diffraction, and Fourier transform infrared and energy‐dispersive X‐ray spectroscopies. 相似文献
12.
《中国化学》2017,35(12):1881-1888
A simple arylhydrazone containing the benzothiazole moiety which may be used as an efficient ligand in the palladium‐catalyzed Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions, under infrared irradiation as an alternative source of energy, is presented. The reactions proceeded with extremely high efficiency under mild conditions and produced very good yields. 相似文献
13.
A suitable approach to stabilize palladium nanoparticles (Pd NPs), with an average diameter of 3–4 nm, on magnetic polymer is described. A new magnetic polymer containing 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine (HPTPy) ligand was prepared by the polymerization of itaconic acid (ITC) as a monomer and trimethylolpropane triacrylate (TMPTA) as a cross‐linker and fully characterized. Pd NPs embedded on the magnetic polymer were successfully applied in Suzuki–Miyaura and Mizoroki–Heck coupling reactions under low palladium loading conditions, and provided the corresponding products with excellent yields (up to 98%) and high catalytic activities (TOF up to 257 hr?1). Also, the catalyst can be easily separated and reused for at least consecutive five times with a small drop in catalytic activity. 相似文献
14.
The purpose of this work was to synthesize and characterize a new magnetic polymer nanosphere‐supported palladium(II) acetate catalyst for reactions requiring harsh conditions. In this regard, an air‐stable, moisture‐stable and highly efficient heterogenized palladium was synthesized by the coordination of palladium(II) acetate with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted modified magnetic nanoparticles with a core–shell structure. The structure of the newly developed catalyst was characterized using various techniques. The catalytic activity of the resultant nano‐organometallic catalyst was evaluated in Mizoroki–Heck and Suzuki–Miyaura reactions to afford the corresponding coupling products in good to excellent yields. High selectivity as well as outstanding turnover number (14 143, 4900) and turnover frequency (28 296, 7424) values were recorded for the catalyst in Suzuki–Miyaura and Mizoroki–Heck reactions, respectively. Magnetic separation and recycling of the catalyst for at least six runs became possible without any significant loss of efficiency or any detectable palladium leaching. 相似文献
15.
《中国化学会会志》2018,65(7):875-882
Hollow Fe3O4@TiO2‐NH2/Pd as a light‐weight, magnetically heterogeneous catalyst was successfully prepared, and characterized by using different techniques including X‐ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), vibrating sample magnetometer (VSM) measurements, and thermogravimetric analysis (TGA). Then this heterogeneous catalyst was tested in the Suzuki cross‐coupling reaction, and the results confirmed the success of this method. The catalyst could be separated easily using an external magnet and reused at least in five runs successfully without any appreciable loss in its catalytic activity. 相似文献
16.
Polyaniline‐anchored palladium catalyst‐mediated Mizoroki–Heck and Suzuki–Miyaura reactions and one‐pot Wittig–Heck and Wittig–Suzuki reactions 下载免费PDF全文
A polyaniline‐anchored palladium catalyst was prepared and screened for coupling reactions of aryl halides. The robust and recyclable catalyst was effective in Mizoroki–Heck and Suzuki–Miyaura reactions of aryl bromides and aryl iodides. The catalyst system was further employed for one‐pot Wittig–Heck and Wittig–Suzuki combinations to build conjugated compounds in good conversions. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
Influence of the Base on Pd@MIL‐101‐NH2(Cr) as Catalyst for the Suzuki–Miyaura Cross‐Coupling Reaction 下载免费PDF全文
Dr. Fabian Carson Vlad Pascanu Dr. Antonio Bermejo Gómez Yi Zhang Dr. Ana E. Platero‐Prats Prof. Xiaodong Zou Prof. Belén Martín‐Matute 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(30):10896-10902
The chemical stability of metal–organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki–Miyaura cross‐coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL‐101‐NH2(Cr). Four bases were compared for the reaction: K2CO3, KF, Cs2CO3 and CsF. The carbonates were the most active and achieved excellent yields in shorter reaction times than the fluorides. However, powder XRD and N2 sorption measurements showed that the MOF catalyst was degraded when carbonates were used but remained crystalline and porous with the fluorides. XANES measurements revealed that the trimeric chromium cluster of Pd@MIL‐101‐NH2(Cr) is still present in the degraded MOF. In addition, the different countercations of the base significantly affected the catalytic activity of the material. TEM revealed that after several catalytic runs many of the Pd nanoparticles (NPs) had migrated to the external surface of the MOF particles and formed larger aggregates. The Pd NPs were larger after catalysis with caesium bases compared to potassium bases. 相似文献
18.
Yasuhiro Uozumi Prof. Dr. Yutaka Matsuura Dr. Takayasu Arakawa Dr. Yoichi M. A. Yamada Dr. 《Angewandte Chemie (International ed. in English)》2009,48(15):2708-2710
You oughta use water : Broad functional‐group (FG) tolerance was observed for the title coupling of aryl halides (X=Cl, Br, I) and aryl boronic acids to give biaryl compounds with up to 94 % ee. The chiral imidazoindole phosphine–palladium catalyst supported on an amphiphilic polystyrene–poly(ethylene glycol) (PS–PEG) resin could be recycled readily.
19.
20.
Toma N. Glasnov Dr. Silvia Findenig C. Oliver Kappe Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(4):1001-1010
Mizoroki–Heck couplings of aryl iodides and bromides with butyl acrylate were investigated as model systems to perform transition‐metal‐catalyzed transformations in continuous‐flow mode. As a suitable ligandless catalyst system for the Mizoroki–Heck couplings both heterogeneous and homogeneous Pd catalysts (Pd/C and Pd acetate) were considered. In batch mode, full conversion with excellent selectivity for coupling was achieved applying high‐temperature microwave conditions with Pd levels as low as 10?3 mol %. In continuous‐flow mode with Pd/C as a catalyst, significant Pd leaching from the heterogeneous catalyst was observed as these Mizoroki–Heck couplings proceed by a homogeneous mechanism involving soluble Pd colloids/nanoparticles. By applying low levels of Pd acetate as homogeneous Pd precatalyst, successful continuous‐flow Mizoroki–Heck transformations were performed in a high‐temperature/pressure flow reactor. For both aryl iodides and bromides, high isolated product yields of the cinnamic esters were obtained. Mechanistic issues involving the Pd‐catalyzed Mizoroki–Heck reactions are discussed. 相似文献