首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Molybdenum disulfide (MoS2) or tungsten disulfide (WS2), as a promising catalyst, is widely investigated for hydrogen evolution reaction (HER). In this work, a composite electrocatalysts MoxW1-xS2 is successfully decorated on carbon fiber paper (CFP) through a facile hydrothermal method. The three-dimensional porous CFP can enable the diffusion and penetration of electrolyte. Comparing with MoS2 and WS2 catalyst, the composite electrocatalyst MoxW1-xS2 nanosheets can expose the large number of electrochemically active sites. Hence, the as-prepared MoxW1-xS2/CFP (3:1) exhibit the outstanding HER catalytic activity with the small Tafel slope of 68 mV dec?1 and the low overpotential of ??178.4?±?0.5 mV at a current density of 10 mA cm?2. Chronoamperometric current test for 18 h confirm the long-term stability of the composite electrocatalyst.  相似文献   

2.
Increasing the active edge sites of molybdenum disulfide (MoS2) is an efficient strategy to improve the overall activity of MoS2 for the hydrogen‐evolution reaction (HER). Herein, we report a strategy to synthesize the ultrasmall donut‐shaped Cu7S4@MoS2 hetero‐nanoframes with abundant active MoS2 edge sites as alternatives to platinum (Pt) as efficient HER electrocatalysts. These nanoframes demonstrate an ultrahigh activity with 200 mA cm?2 current density at only 206 mV overpotential using a carbon‐rod counter electrode. The finding may provide guidelines for the design and synthesis of efficient and non‐precious chalcogenide nanoframe catalysts.  相似文献   

3.
Molybdenum disulfide (MoS2) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS2 nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo12O403− clusters (denoted as PMo12) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS2-CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS2-CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H2SO4 at a current density of 10 mA cm−2. This work offers a new pathway for the rational design of MoS2-based HER electrocatalysts.  相似文献   

4.
The layered structure of molybdenum disulfide (MoS2) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2: basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X‐ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k0 of 4.96×10?5 and 1.1×10?3 cm s?1 for [Fe(CN)6]3?/4? and [Ru(NH3)6]3+/2+ redox probes, respectively, compared to the basal plane, which yielded k0 tending towards zero for [Fe(CN)6]3?/4? and about 9.3×10?4 cm s?1 for [Ru(NH3)6]3+/2+. The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6]3?/4? in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations.  相似文献   

5.
The layered crystal MoS2 has been proposed as an alternative to noble metals as the electrocatalyst for the hydrogen evolution reaction (HER). However, the activity of this catalyst is limited by the number of available edge sites. It was previously shown that, by using an imidazolium ionic liquid as synthesis medium, nanometre‐size crystal layers of MoS2 can be prepared which exhibit a very high number of active edge sites as well as a de‐layered morphology, both of which contribute to HER electrocatalytic activity. Herein, it is examined how to control these features synthetically by using a range of ionic liquids as synthesis media. Non‐coordinating ILs with a planar heterocyclic cation produced MoS2 with the de‐layered morphology, which was subsequently shown to be highly advantageous for HER electrocatalytic activity. The results furthermore suggest that the crystallinity, and in turn the catalytic activity, of the MoS2 layers can be improved by employing an IL with specific solvation properties. These results provide the basis for a synthetic strategy for increasing the HER electrocatalytic activity of MoS2 by tuning its crystal properties, and thus improving its potential for use in hydrogen production technologies.  相似文献   

6.
The electronic properties of the anions mentioned in the title polyanions were calculated by means of Density Functional Theory (DFT). The redox properties and the basicity of the external oxygen sites of those polyanions were analyzed. The results show that the redox properties of Strandberg anions depend on the nature of heteroatom X. The organic group bonded to the heteroatom modifies the redox property of the cluster. The oxygen basicities of the polyanions were analyzed by virtue of molecular electrostatic potential (MEP). The MEP distribution suggests that the most basic centers are triple‐bridging oxygen atoms, one of which is shared with two metal atoms and one heteroatom X in [P2Mo5O23]6? and [As2Mo5O23]6?. In [(RP)2Mo5O21]4?, the triple‐bridging oxygen atoms and the double‐bridging oxygen atoms bonded to two Mo atoms identified as the most basic centers. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

7.
Thiocomplexes of Molybdenum. Crystal Structure of a Mixed Single Crystal (PPh3Me)2[Mo2Br6(NO)4]/(PPh3Me)2[Mo2Br6S2(NO)2] The reactions of (PPh4)2MoS4 with MoBr4 and MoBr2(NO)2 resp. lead to the binuclear complexes (PPh4)2[S2MoS2MoBr3(SMe2)] and (PPh4)[S2MoS2MoBr2(NO)2], in which the molybdenum atoms are linked by sulfido bridges. The preparation of (PPh3Me)2S6 and (AsPh4)2S7 from Na2S4 and PPh3MeBr, and AsPh4Cl, respectively, in ethanol solution is described. Disulfido briges are a feature of (AsPh4)2[Mo2Br6(S2)2(SMe2)2], which is obtained from MoBr4(SMe2)2 and (AsPh4)2S7. Mixed single crystals containing 2/3 (PPh3Me)2[Mo2Br6(NO)4] and 1/3 (PPh3Me)2[Mo2Br6S2(NO)2] are formed in the reaction of MoBr2(NO)2 with (PPh3Me)2S6, as shown by X-ray single crystal structure determination. The compound crystallizes monoclinic in the space group C2/c (Internat. Tab. Nr. 15) with four formula units per unit cell (2351 independent observed reflexions, Rw = 0.037). The cell parameters are a = 1603 pm, b = 1549 pm, c = 1863 pm; β = 92.2°. The complexes consist of PPh3Me cations and the dimeric anions [Mo2Br6(NO)4]2? and [Mo2Br6S2(NO)2]2? which occur in the ratio 2:1. In these the molybdenum atoms are connected via MoBr2Mo bridges of slightly different lengths (Mo? Br 265 pm and 267 pm) forming a controsymmetric double octahedron. All molybdenum atoms have two terminal bromo ligands with Mo? Br bond lengths of 258 pm and 260 pm; in the [Mo2Br6(NO)4]2? ion each molybdenum has two covalently bonded nitrosyl groups on cis-position with Mo? N bond lengths of 183 pm. In the [Mo2Br6S2(NO)2]2? ion one of the two nitrosyl groups at each metal atom is substituted by a terminal sulfido ligand with a Mo? S bond length of 240 pm. The i.r. spectra are reported.  相似文献   

8.
Exploration of low‐cost and earth‐abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition‐metal dichalcogenides (TMDs) showed outstanding performance as co‐catalysts for the hydrogen evolution reaction (HER), designing TMD‐hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one‐pot wet‐chemical method is developed to prepare MS2–CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single‐layer MS2 nanosheets with lateral size of 4–10 nm selectively grow on the Cd‐rich (0001) surface of wurtzite CdS nanocrystals. These MS2–CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2–CdS and MoS2–CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2–CdS nanohybrids showed enhanced stability after a long‐time test (16 h), and 70 % of catalytic activity still remained.  相似文献   

9.
The molecular and electronic structure of Mo12S24 macromolecule as the MoS2 single slab structure was calculated by the density functional theory (DFT) method with the B3P86 hybrid exchange-correlation functional. The results of calculations point to slight relaxation of coordinatively unsaturated Mo and S atoms, which is consistent with the published data. The calculated width of the forbidden band (0.85–0.98 eV) is comparable with the experimental value (1.30 eV) and similar to that obtained from DFT calculations with periodic boundary conditions (0.89 eV). The surface Mo centers in the Mo12S24 macromolecule are more reduced than the internal (MoIV) atoms. In order to characterize the adsorption capacity of coordinatively unsaturated Mo centers, a Mo12S24·6H2S adsorption complex was calculated. The structure and energy characteristics of the adsorption complex point to a weak donor-acceptor interaction of the π-lone pair of H2S molecule with the surface (reduced) Mo centers. The active center of thiophene hydrodesulfuration catalysts is formed as a result of the oxidative addition of hydrogen followed by occlusion of hydrogen into the MoS2 matrix. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2189–2193, October, 2005.  相似文献   

10.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

11.
[Mo3S(S2)3(dtc)3]I, [Mo3S(SeS)3(dtc)3](dtc), and [Mo3Se(Se2)3(dtc)3](dtc) (dtc = N,N-diethyldithiocarbamate) were investigated by liquid SIMS-FTMS. The fragmentation pathways were essentially the same for the three compounds and can be explained by two types of fragmentation processes: stepwise abstraction of S/Se atoms as exemplified by the series [Mo3Xz(dtc)3]+ (4 ? z ? 7, X = S, Se), and ligand dissociation, as indicated by the generation of [Mo3Xz(dtc)2]+ (5 ? z ? 7, X = S, Se). The exclusive elimination of the Se-atoms from [Mo3S(Sax-Seeq)3(dtc)3]+ confirmed the inequivalent reactivity of the bridging atoms in axial and equatorial position as observed in previous studies. Collision-induced decomposition (CID) of [Mo3S7(dtc)3]+ ( 1 ), [Mo3S6(dtc)3]+ ( 2 ), [Mo3S(Sax–Seeq)3(dtc)3]+ ( 3 ), and [Mo3Se7(dtc)3]+ ( 4 ) revealed distinctly different fragmentation reactions for the SIMS and CID mode. CID of 1, 3 , and 4 resulted in a two-step reaction with the exclusive elimination of diatomic molecules XY (X,Y = S/Se). In the case of 3 , the selective elimination of Se2 indicated the abstraction of two Se-atoms located in equatorial positions of two different bridging groups. This result is discussed in terms of mechanisms, based on labile M? Xeq and inert M? Xax bonds with an intramolecular formation of a X4 fragment prior to the elimination of X2.  相似文献   

12.
Electronic Structure of Structural Open Derivatives of the [Mo6X14]2?-Cluster: [Mo5Cl13]2? and [Mo4I11]2? The electronic structure of structural open derivatives of the [Mo6X14]2?-cluster [Mo5Cl13]2? and [Mo4I11]2? has been studied by the EHMO method. In [Mo5Cl13]2? 9 occupied MO's with dominant Mo4d character are responsible for the formation of the 8 metal-metal bonds. In [Mo4I11]2? the stronger covalent character of the Mo? I bonds affects the localization and the energy of molecular orbitals and also the charge distribution. The metal-metal bonds are formed by 8 MO's containing considerable participation of halogen AO's contrary to the chloride cluster. There is no bonding between the Mo atoms at the wing tips of the Mo4 butterfly and the reason for decreasing the dihedral angle between the Mo3 planes in [Mo4I11]2? compared with the octahedral angle is apparently the stabilization of the whole system (Mo? Mo and Mo? I bonds). The unpaired electron occupies in both clusters a slightly antibonding (with regard to the Mo? Mo bonds) orbital.  相似文献   

13.
As an electrocatalyst with abundant resources and great potential, molybdenum disulfide is regarded as one of the most likely alternatives to expensive noble‐metals catalysts. However, it is still a challenge to achieve large scale production of few‐layer MoS2 with enhancing activity of electrocatalytic hydrogen reaction at ambient conditions. Herein, we developed a simple environmentally friendly two‐step method, which included intercalation reaction and a subsequent electrochemical reduction reaction for mass preparation of defect‐rich desulfurized MoSx (D?MoSx) nanosheets with plentiful sulfur vacancies. The ratio of sulfur‐molybdenum atoms can be adjusted from 2 : 1 to 1.4 : 1 by regulating the desulfurization voltage. It was found that the HER catalytic activity of the D?MoSx was enhanced compared with that of pristine MoS2 (P?MoS2), the current density of D?MoSx (desulfurization at ?1.0 V) at ?0.3 V versus RHE was about 169% of the P?MoS2, and the Tafel slope decreased to 136 mV dec?1. This method can be widely applied to large‐scale preparation of other two‐dimensional materials.  相似文献   

14.
Polyoxothiometalate ions (ThioPOM) are active hydrogen-evolution reaction (HER) catalysts based on modular assembly built from electrophilic clusters {MoSx} and vacant polyoxotungstates. Herein, the dumbbell-like anion [{(PW11O39)Mo3S4(H2O)3(OH)}2]8− exhibits very high light-driven HER activity, while the active cores {Mo3S4} do not contain any exposed disulfido ligands, which were suspected to be the origin of the HER activity. Moreover, in the catalyst architecture, the two central {Mo3S4} cores are sandwiched by two {PW11O39}7− subunits that act as oxidant-resistant protecting groups and behave as electron-collecting units. A detailed photophysical study was carried out confirming the reductive quenching mechanism of the photosensitizer [Ir(ppy)2(dtbbpy)]+ by the sacrificial donor triethanolamine (TEOA) and highlighting the very high rate constant of the electron transfer from the reduced photosensitizer to the ThioPOM catalyst. Such results provide new insights into the field of molecular catalytic systems able to promote high HER activity.  相似文献   

15.
The black crystal of (NH4)[Mo2(S2)6]* 8/3 H2O belongs to the orthorhombic system, space group D32-P22121, with a = 12.064(6), b = 12.534(4), c = 19.558(9)Å, V =2957(3)Å3, Z = 4 and Dc = 2.23g.cm?3. The intensity data were collected on a Syntex R3 four-circle diffractometer. The structure was solved by Patterson method and direct method, the light atoms (except H atoms) were obtained from ΔF syntheses. The structure was refined by least-squares with anisotropic thermal parameters. The values of R and Rw were 0.092 and 0.072 respectively. The crystal structure contains discrete dimeric cluster [Mo2(S2)6]2? ions, NH4+ cations and H2O molecules. There are two crystallographically independent [Mo2S2)6]2? ions in the crystal, one locates on general position [Figure 1(a)], the other locates on two-fold axis [Figure 1(b)]. It contains one and a half [Mo2S2)6]2? ions in an asymmetric unit. In [Mo2S2)6]2? each Mo is coordinated side on by four S22? groups in a distorted dodecahedral arrangement, two of which are bridging and the other two are terminal. The Mo? S bond length is 2.441 Å (mean), and S? S is 2.049 Å (mean). The Mo? Mo distance is 2.784 Å (mean), which is to be regarded as a single bond length. The formal oxidation state of Mo is five, it is probably a mixed valence MoIV? MoVI, and so shows a remarkable deep colour.  相似文献   

16.
Amorphous molybdenum sulfide is an attractive electrode material for Li/Mg batteries and an efficient Pt-free catalyst for the hydrogen evolution reaction in water. By using the electrochemical quartz crystal microbalance (EQCM) analysis, new insights were gained into the electrochemical polymerization of the [Mo3S13]2− cluster, which generates amorphous molybdenum sulfide thin films. In this work, it is shown that, at the anodic potential, a two-electron oxidative elimination of the terminal disulfide ligand within the [Mo3S13]2− cluster induces the polymerization. A reductive elimination of the terminal disulfide ligand also occurs at the cathodic potential, inducing the polymerization. However, in sharp contrast to the anodic polymerization, according to which the film growth is rapid, the cathodic polymerization competes with the electrochemical reductive corrosion of the readily grown film, therefore occurring at a significant lower growth rate.  相似文献   

17.
Mo2O2S2(HGly)(Gly)2 1 and K6[Mo2O2S2(nta)2][Mo2O2S2(ntaH)2]·4H2O 2 were synthesized by the reactions of (NH4)2MoS4 and amino acids L (L = glycine, nitrilotriacetic acid) in ethanol–water medium at ambient temperature. The two complexes were characterized by elemental analysis, infrared spectra, UV–visible spectra, TG–DTA and XPS. X‐ray crystallographic structural analyses revealed that compound 1 is a binuclear Mo? S? glycinate complex, a glycinate ligand is coordinated to each molybdenum atom through its amine nitrogen and carboxylato oxygen, respectively, and the third glycinate acts as a bridge through its two carboxylato oxygens linking the two molybdenum atoms. Compound 2 is also a binuclear Mo? S complex with two nitrilotriacetate ligands, each of which is coordinated to a molybdenum atom via its two β‐carboxylato oxygens and a nitrogen atom. Simultaneously, each molybdenum atom in 1 and 2 is chelated to a terminal oxygen and two bridging sulfurs to complete the octahedral configuration. Their catalytic activities in the reduction from C2H2 to C2H4 as well as other binuclear Mo? S? polycarboxylate complexes, a [Fe4S4] single cubane and a chainlike Mo? Fe? S compound were investigated and it was found that 1 exhibited relatively good catalytic activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The development of efficient catalysts for electrochemical hydrogen evolution is essential for energy conversion technologies. Molybdenum disulfide (MoS2) has emerged as a promising electrocatalyst for hydrogen evolution reaction, and its performance greatly depends on its exposed edge sites and conductivity. Layered MoS2 nanosheets supported on a 3D graphene aerogel network (GA‐MoS2) exhibit significant catalytic activity in hydrogen evolution. The GA‐MoS2 composite displays a unique 3D architecture with large active surface areas, leading to high catalytic performance with low overpotential, high current density, and good stability.  相似文献   

19.
The electronic structures of the five members of the electron transfer series [Mo(bpy)3]n (n=3+, 2+, 1+, 0, 1?) are determined through a combination of techniques: electro‐ and magnetochemistry, UV/Vis and EPR spectroscopies, and X‐ray crystallography. The mono‐ and dication are prepared and isolated as PF6 salts for the first time. It is shown that all species contain a central MoIII ion (4d3). The successive one‐electron reductions/oxidations within the series are all ligand‐based, involving neutral (bpy0), the π‐radical anion (bpy.)1?, and the diamagnetic dianion (bpy2?)2?: [MoIII(bpy0)3]3+ (S=3/2), [MoIII(bpy.)(bpy0)2]2+ (S=1), [MoIII(bpy.)2(bpy0)]1+ (S=1/2), [MoIII(bpy.)3] (S=0), and [MoIII(bpy.)2(bpy2?)]1? (S=1/2). The previously described diamagnetic dication “[MoII(bpy0)3](BF4)2” is proposed to be a diamagnetic dinuclear species [{Mo(bpy)3}22‐O)](BF4)4. Two new polynuclear complexes are prepared and structurally characterized: [{MoIIICl(Mebpy0)2}22‐O)]Cl2 and [{MoIV(tpy.)2}22‐MoVIO4)](PF6)2?4 MeCN.  相似文献   

20.
Polychalcogenoanions of the Transition Metals. IV. Novel Redox Condensation Reactions of MoO2S22? in H2O and Preparation of Di-μ-sulfido Complexes of Mov MoVIO2S22? polymerizes after protonation in aqueous solution under physiological conditions forming polynuclear complexes with η-S22? ligands (for example [Mo2vO2S2(S2)2]2?). From the solution other di-μ-sulfido Mov complexes as for example [Mo2O2S2(Et2dtc)2] can be easily obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号