首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the synthesis of a novel Fe3O4/amidoxime (AO)/Pd nanocatalyst by grafting of AO groups on Fe3O4 nanoparticles and subsequent deposition of Pd nanoparticles. Prior to grafting of AO, the 2‐cyanoethyl‐functionalized Fe3O4 nanoparticles prepared through combining 2‐cyanoethyltriethoxysilane and Fe3O4 were treated with hydroxylamine. The AO‐grafted Fe3O4 nanoparticles were then used as a platform for the deposition of Pd nanoparticles. The catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, wavelength‐ and energy‐dispersive X‐ray spectroscopies and inductively coupled plasma analysis. Fe3O4/AO/Pd is novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A protocol is introduced for the preparation of a new cage‐like Pd–Schiff base organometallic complex supported on Fe3O4 nanoparticles (Fe3O4@Schiff‐base‐Pd). The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy, Brunauer–Emmett–Teller measurements, scanning electron microscopy (SEM), transmission electron microscopy, X‐ray mapping, thermogravimetric analysis, vibrating sample magnetometry and inductively coupled plasma atomic emission spectroscopy. In the second stage, the catalytic activity of this catalyst was studied in the Suzuki and Heck cross‐coupling reactions in water as a green solvent. In this sense, simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent are some advantages of this protocol. Finally, the nanocatalyst was easily recovered, using an external magnet, and reused several times without significant loss of its catalytic efficiency. In addition, the stability of the catalyst after recycling was confirmed using SEM, XRD and FT‐IR techniques.  相似文献   

3.
《中国化学会会志》2018,65(7):875-882
Hollow Fe3O4@TiO2‐NH2/Pd as a light‐weight, magnetically heterogeneous catalyst was successfully prepared, and characterized by using different techniques including X‐ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), vibrating sample magnetometer (VSM) measurements, and thermogravimetric analysis (TGA). Then this heterogeneous catalyst was tested in the Suzuki cross‐coupling reaction, and the results confirmed the success of this method. The catalyst could be separated easily using an external magnet and reused at least in five runs successfully without any appreciable loss in its catalytic activity.  相似文献   

4.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

5.
Palladium and Fe3O4 nanoparticles were deposited on N‐(2‐aminoethyl)acetamide‐functionalized cellulose for use in a catalytic reaction. The catalyst was characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy, and applied in the oxidation reaction of ethylbenzene at 100 °C using H2O2. Styrene oxide was obtained as the sole product of the oxidation reaction during 24 h. This reaction has some advantages such as one‐pot transformation of ethylbenzene to styrene oxide, high yield, excellent selectivity and magnetically recoverable catalyst. Also, the recovered catalyst could be used in the oxidation reaction four times without decrease in yield. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A novel heterogeneous Pd catalyst was synthesized by anchoring Pd(II) onto 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine‐coated Fe3O4 (FMNPs@TPy‐Pd). This catalyst has been demonstrated for the first time as a recoverable and reusable heterogeneous nanocatalyst in Suzuki and Heck cross‐coupling reactions. The catalyst is very easy to handle and is environmentally safe and economical. FMNPs@TPy‐Pd was characterized using transmission and scanning electron microscopies, X‐ray diffraction, and Fourier transform infrared and energy‐dispersive X‐ray spectroscopies.  相似文献   

7.
In this study, a novel magnetic mesoporous MCM‐41 silica supported ionic liquid/palladium complex (Fe3O4@MCM@IL/Pd) with core‐structure was prepared and characterized and its catalytic performance was developed under green conditions. The Fe3O4@MCM@IL/Pd was prepared via a post grafting method and was characterized using Fourier transform infrared spectroscopy, thermal gravimetric analysis, wide‐ and low‐angle powder X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer and energy‐dispersive X‐ray analyses. This was applied as an efficient and recoverable nanocatalyst for the one‐pot synthesis of pyrano[2,3‐d]pyrimidine derivatives under ultrasonic conditions. The catalyst was magnetically recovered and reused for 12 consecutive cycles without significant loss of its activity and selectivity.  相似文献   

8.
Supported palladium catalyst (Pd/Fe3O4@SiO2) was easily prepared by supporting PdCl2 on silica‐coated magnetic nanoparticles Fe3O4 in ethylene glycol. The as‐prepared sample was characterized by infrared spectroscopy (IR), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS). The formation of active specie Pd(0) was confirmed by XRD and XPS, and the Pd loading for the fresh and recovered catalyst was determined by atomic absorption spectroscopy (AAS). Pd/Fe3O4@SiO2 was employed for the synthesis of biphenyl derivatives via Suzuki reaction. In terms of the yield of biphenyl, the supported catalyst displayed nearly equal catalytic performance to that of homologous PdCl2 under microwave irradiation for 30 min but higher than that obtained by traditional heating method for 12 h. The catalytic performance of Pd/Fe3O4@SiO2 for Suzuki reactions involving various aryl halides and arylboronic acids were also examined. Impressive yield of biphenyl at 68.2% was obtained even in the presence of unreactive aryl chlorides. Pd/Fe3O4@SiO2 was recovered by a permanent magnet and directly reused in the next run, and no obvious deactivation was observed for up to 6 times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A novel and task‐specific nano‐magnetic Schiff base ligand with phosphate spacer using 2‐aminoethyl dihydrogen phosphate instead of usual coating agents, i.e. tetraethoxysilane and 3‐aminopropyltriethoxysilane, for coating of nano‐magnetic Fe3O4 is introduced. The nano‐magnetic Schiff base ligand with phosphate spacer as a novel catalyst was synthesized and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, derivative thermogravimetry, vibrating sample magnetometry, atomic force microscopy, X‐ray photoelectron spectroscopy and energy‐dispersive X‐ray spectroscopy. The resulting task‐specific nano‐magnetic Schiff base ligand with phosphate spacer was successfully employed as a magnetite Pd nanoparticle‐supported catalyst for Sonogashira and Mizoroki–Heck C–C coupling reactions. To the best of our knowledge, this is the first report of the synthesis and applications of magnetic nanoparticles of Fe3O4@O2PO2(CH2)2NH2 as a suitable spacer for the preparation of a designable Schiff base ligand and its corresponding Pd complex. So the present work can open up a new and promising insight in the course of rational design, synthesis and applications of various task‐specific magnetic nanoparticle complexes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Betti base‐modified Fe3O4 nanoparticles have been successfully designed and synthesized for the first time through the condensation of Fe3O4 magnetic nanoparticles coated by (3‐aminopropyl)triethoxysilane with β‐naphthol and benzaldehyde. Their application as a novel magnetic nanocatalyst in the Knoevenagel condensation and also application to immobilization of palladium nanoparticles for Suzuki coupling reactions have been investigated which opens a new field for application of Betti base derivatives in organic transformations. The synthesized inorganic–organic hybrid nanocatalyst has been fully been characterized using Fourier transform infrared, X‐ray diffraction, vibrating sample magnetometry, transmission and scanning electron microscopies, energy‐dispersive X‐ray, wavelength‐dispersive X‐ray and X‐ray photoelectron spectroscopies and inductively coupled plasma techniques. The catalyst was easily separated with the assistance of an external magnet from the reaction mixture and reused for several consecutive runs with no significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A robust, safe and magnetically recoverable palladium catalyst was synthesized by anchoring Pd(II) onto ethylenediaminetetraacetic acid‐coated Fe3O4 (Fe3O4@EDTA) magnetic nanoparticles. The Fe3O4 magnetic nanoparticle‐supported Pd(II)–EDTA complex catalyst thus obtained was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, vibrating sample magnetometry, X‐ray diffraction, and inductively coupled plasma atomic emission and Fourier transform infrared spectroscopies. Fe3O4@EDTA–Pd(II) was screened for the Suzuki reaction and reduction of nitro compounds in water. The Pd content of the catalyst was measured to be 0.28 mmol Pd g?1. In addition, the Fe3O4@EDTA–Pd catalyst can be easily separated and recovered with an external permanent magnet. The anchored solid catalyst can be recycled efficiently and reused five times with only a very slight loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Tribenzylammonium tribromide supported onto magnetic nanoparticles (Br3‐TBA‐Fe3O4) as a bromine source was successfully synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and vibrating sample magnetometry. The synthesized catalyst is shown to be a versatile and highly efficient heterogeneous catalyst for the Knoevenagel condensation and synthesis of 2,3‐dihydroquinazolin‐4(1H )‐one and polyhydroquinoline derivatives. To the best of the authors' knowledge, this is the first report of the use of a bromine source immobilized on Fe3O4 nanoparticles as a magnetically separable catalyst for these reactions. The nanosolid catalyst can be magnetically recovered and reused readily several times without significant loss in catalytic efficiency.  相似文献   

14.
A novel heterogenized organometallic catalyst was synthesized by coordinating palladium with polyvinyl alcohol‐functionalized Fe3O4@SiO2 nanospheres. This novel catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscope, field emission scanning electron microscope, dynamic light scattering, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, energy dispersive X‐ray analysis, thermogravimetric analysis and inductively coupled plasma analysis. The prepared palladium nanoparticles supported on polyvinyl alcohol functionalized Fe3O4@SiO2 nanoparticles were successfully applied as a magnetically recyclable catalyst in Heck and Sonogashira coupling reactions in water. They showed remarkable activity toward aryl halides (I, Br, Cl) using very low palladium loading in excellent yields and demonstrated high TONs (mmol of product per mmol of catalyst). Also, the catalyst could be magnetically separated and reused seven times without any appreciable loss of catalytic activity.  相似文献   

15.
A copper catalyst has been explored as an efficient and recyclable catalyst to effect Sonogashira and Suzuki cross‐coupling reactions. After modification of 2‐(((piperazin‐1‐ylmethyl)imino)methyl)phenol (PP) on the surface of amorphous silica‐coated iron oxide (Fe3O4@SiO2@Cl) magnetic core–shell nanocomposite, copper(II) chloride was employed to synthesize the Fe3O4@SiO2@PP‐Cu catalyst, affording a copper loading of 1.52 mmol g−1. High yield, low reaction times, non‐toxicity and recyclability of the catalyst are the main merits of this protocol. The catalyst was characterized using Fourier transform infrared, X‐ray photoelectron, energy‐dispersive X‐ray and inductively coupled plasma optical emission spectroscopies, X‐ray diffraction, scanning and transmission electron microscopies, and vibrating sample magnetometry.  相似文献   

16.
A new magnetically separable nickel catalyst (Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2) was readily prepared and structurally characterized by Fourier transform infrared spectroscopy (FT‐IR), Scanning electron microscopy (SEM), Energy‐dispersive X‐ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD) and Atomic absorption spectroscopy (AAS). The Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2 exhibited efficient catalytic activity in the synthesis of 2,3‐dihydroquinazoline‐4(1H)‐ones and polyhydroquinolines. Catalysis research under water and solvent‐free conditions makes also this synthetic protocol ideal and fascinating from the environmental point of view. The catalyst can be magnetically recovered after the reaction and can be reused for many times without appreciable decrease in activity.  相似文献   

17.
In the present study, Fe3O4 nanoparticles were prepared via simple and versatile procedure. Then, a novel and green catalyst was synthesized by the immobilization of Ni on Fe3O4 nanoparticles coated with adenine. The activity of this nanostructure compound was examined for the oxidation of sulfides, oxidative coupling of thiols and synthesis of polyhydroquinolines. The prepared catalyst was characterized by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP‐OES), X‐ray Diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) measurements. This organometallic catalyst was recovered by the assistance of an external magnetic field from the reaction mixture and reused for seven continuous cycles without noticeable change in its catalytic activity.  相似文献   

18.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

19.
A new magnetic catalyst was prepared through the reaction of silanol groups, on the surface of silica‐coated Fe3O4 magnetic nanoparticles, with (3‐chloropropyl)triethoxysilane followed by hexamethylenetetramine and chlorosulfonic acid. The obtained magnetic catalyst was characterized using thermogravimetric analysis, vibrating sample magnetometry, scanning electron microscopy and energy‐dispersive X‐ray analysis. Its catalytic activity was investigated in the synthesis of pyranopyrazole compounds, and the results were excellent regarding high yield of the products and short reaction time.  相似文献   

20.
In the current study, a novel and reusable biological urea based nano magnetic catalyst namely Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was designed and synthesized. The structure of the titled catalyst was fully characterized using several skills including Fourier transform infrared (FT‐IR) spectroscopy, energy dispersive X‐ray (EDX) analysis, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo gravimetric analysis/differential thermal analysis (TG/DTG) and vibrating sample magnetometer (VSM). Then, the catalytic performance of Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was successfully inspected towards the multicomponent synthesis of 2‐amino‐3‐cyano pyridine derivatives through a vinylogous anomeric based oxidation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号