首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
The structure of [Co2(μ‐OH)2(μ‐OAc)(OAc)2(dipyam)2]AcO · EtOH ( 1 ) has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as a “di(μ‐hydroxo)(μ‐acetato)dicobalt(III)” core with chelating 2, 2′‐dipyridylamine and monodentate acetate ligands. The coordination polyhedron around each cobalt atom is a distorted octahedral. The dimers are linked in the crystal by N‐H···Oionic AcO and C‐H···Omonodentate AcO hydrogen bonds. Spectroscopic data are also presented.  相似文献   

2.
The sulfurization of DmpGeH3 (Dmp=2,6‐dimesitylphenyl) afforded the trinuclear germanium sulfide [DmpGe(μ‐S)]2(μ‐S)2Ge(SH)‐Dmp and a series of polythiadigermabicyclo[x.1.1]alkanes (x=3, 4, 5). The reduction of the S? S bonds of these germabicycloalkanes by NaBH4 at 0 °C afforded the dinuclear mercaptogermane syn‐[DmpGe(SH)(μ‐S)2Ge(SH)‐Dmp] ( 5 ) in good yield. The reaction of [Pd(dppe)Cl2] (dppe=1,2‐bis(diphenylphosphanyl)ethane) and the dilithium salt of 5 prepared in situ by the addition of nBuLi (2 equiv) gave the Ge2PdS4 cluster [DmpGe(μ‐S)]2[(μ‐S)2Pd(dppe)], in which the dithiadigermetanedithiolate is bound to the Pd atom at the two thiolato sulfur atoms. The same reaction with [Pd(PPh3)2Cl2] gave another Ge2PdS4 cluster, [DmpGe(μ‐S)]2[(μ‐S)2Pd(PPh3)], but with the dithiadigermetanedithiolate and the Pd center conjoined through a μ‐S atom between the two germanium atoms in addition to the two thiolato sulfur atoms to form a highly distorted cluster core. The formation of two different types of Ge2PdS4 clusters represents the usefulness of 5 in the synthesis of various polynuclear complexes composed of germanium and transition metals.  相似文献   

3.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

4.
Diphenyl(3‐methyl‐2‐indolyl)phosphine (C9H8NPPh2, 1 ) gives stable dimeric palladium(II) complexes that contain the phosphine in P,N‐bridging coordination mode. On treating 1 with [Pd(O2CCH3)2], the new complexes [Pd(μ‐C9H7NPPh2)(NCCH3)]2 ( 2 ) or [Pd(μ‐C9H7NPPh2)(μ‐O2CCH3)]2 ( 3 ) were isolated, depending on the solvent used, acetonitrile or toluene, respectively. Further reaction of 3 with the ammonium salt of 1 led to the substitution of one carboxylate ligand to afford [Pd(μ‐C9H7NPPh2)3(μ‐O2CCH3)] ( 4 ), in which the bimetallic unit is bonded by three C9H7NPPh2? moieties and one carboxylate group. Using this methodology, [Pd2(μ‐C6H4PPh2)2(μ‐C9H7NPPh2)(μ‐O2CCX3)] (X=H ( 7 ); X=F ( 8 )) were synthesised from the ortho‐metalated compounds [Pd(C6H4PPh2)(μ‐O2CCX3)]2 (X=H ( 5 ); X=F ( 6 )). Complexes 3 , 4 , 7 , and 8 have been found to be active in the catalytic β‐boration of α,β‐unsaturated esters and ketones under mild reaction conditions. Hindrance of the carbonyl moiety has an influence on the reaction rate, but quantitative conversion was achieved in many cases. More remarkably, when aryl bromides were added to the reaction media, complex 7 induced a highly successful consecutive β‐boration/cross‐coupling reaction with dimethyl acrylamide as the substrate (99 % conversion, 89 % isolated yield).  相似文献   

5.
A new mercury(II) complex of 1,2‐bis(4‐pyridyle)ethene (bpe) with anionic acetate and thiocyanate ligands has been synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The single crystal X‐ray analysis shows that the complex is a two‐dimensional polymer with simultaneously bridging 1,2‐bis(4‐pyridyle)ethane, acetate and thiocyanate ligands and basic repeating dimeric [Hg2(μ‐bpe)(μ‐OAc)2(μ‐SCN)2] units. The two‐dimensional system forms a three‐dimensional network by packing via ππ stacking interactions.  相似文献   

6.
The first metal‐carbon bond β‐form paddlewheel complexes containing a Pd24+ core, [Pd(η2‐dithio)]2(μ‐dppa)( μ‐SCNMe2) (dithio = S2P(OEt)2, 2 ; S2COEt, 3 ; S2CNC4H8, 4 ), were prepared by the reactions of the α‐form paddlewheel‐type Pd2+4 dipalladium complex [Pd2 (μ‐Hdppa)2(μ‐SCNMe2)2][Cl]2, 1 with various dithio‐ligands, [NH4][S2P(OEt)2], [K][S2COEt] and [NH4][S2CNC4H8], in methanol at ambient temperature (Hdppa = bis(diphenylphosphino)amine). Electronic spectra and two X‐ray structures of the Pd2+4 species have been determined.  相似文献   

7.
The preparation of oxovanadium(IV, V) coordination compounds with 2‐acetylpyridine‐2‐furanoylhydrazone (Hapf) is described. [VO(apf)(acac)] was prepared from oxovanadium(IV) diacetylacetonate [VO(acac)2] by reaction with Hapf in methanol or dichloromethane. The complex is paramagnetic and its EPR spectrum is consistent with an octahedral coordination for the vanadium(IV) atom. Voltammetry studies of [VO(apf)(acac)] indicate an irreversible oxidation, in agreement with the chemical behavior of the compound in solution. The vanadium(IV) complex undergoes slow oxidation in alcoholic solution, losing the acetylacetonate ligand to form [VO2(apf)] and [V2O2(μ‐O)2(apf)2]. The crystal structures of these last compounds were determined by X‐ray diffraction methods. [V2O2(μ‐O)2(apf)2] crystallizes monoclinic [P21/c, Z = 2, a = 817.400(10), b = 1650.90(3), c = 984.70(2) pm, β = 112.7190(10)°]. The crystal structure consists of dimeric units, in which two μ‐oxo ligands subtend asymmetric bridges between the vanadium atoms in a very distorted octahedral coordination. In the crystal of [VO2(apf)], orthorhombic [Pnma, Z = 4, a = 1630.000(10), b = 675.10(4), c = 1136.40(2) pm], the vanadium(V) atom is pentacoordinated.  相似文献   

8.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

9.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

10.
(PPh4)2[Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)]2 – a Rhenium(VII) Complex with a Nitrido, a Dinitridosulfato(II), and a Rhena‐3,5‐dithia‐2,4,6‐triazino Function The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals, which were suitable for a crystal structure determination. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[Cl2ReVII(N3S2)(μ‐NSN)(μ‐N≡ReVIICl3)]2 ( 1 ): Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1280.8(2), b = 1017.5(1), c = 2467.8(3) pm, β = 95.04(1)°, R = 0.049. The complex anion of 1 consists of a planar ReN3S2‐heterocycle which is connected with the second rhenium atom by a μ‐nitrido bridge as well as by a μ‐dinitridosulfato(II) ligand to form a planar Re2(N)(NSN) six‐membered heterocycle. This [Cl2Re(N3S2)(μ‐NSN)(μ‐N≡ReCl3)] unit dimerizes via one of the N‐atoms of the (NSN)4– ligand to give a centrosymmetric Re2N2 four‐membered ring.  相似文献   

11.
The synthesis of the complex LSb(μ‐I)2(μ‐S)SbL ( 1 ) was accomplished by reacting antimony powder with diiodine activated by tetraphenyldithioimidodiphosphine (SPPh2NHPPh2S) (H L ). X‐ray diffraction (tetragonal, M = 1426.30, space group I 41/a (No. 88), Z = 8, a = 18.020(2) Å, c = 33.037(4) Å) shows that ( 1 ) is a dinuclear SbIII complex, in which the two metal ions are bridged by one sulphide and two iodide anions. An anionic bidentate L ligand completes the coordination sphere of each metal with its two sulphur atoms, leading to a slightly distorted pyramidal coordination geometry, since each metal ion shows the presence of a sterically active lone‐pair in trans position to the bridging sulphide. 31P CP‐MAS NMR and IR spectroscopies are in accordance with the structural features of the complex.  相似文献   

12.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

13.
A new germanium complex, cis‐[Ge(pyca)2(OH)2]?2 H2O ( 1 ; pyca=pyridine‐2‐carboxylato), was synthesized by the reaction of [Ge(acac)2Cl2] (acac=acetylacetonato=pentane‐2,4‐dionato) with potassium pyridine‐2‐carboxylate (Kpyca) in H2O/THF. According to the single‐crystal X‐ray diffraction analysis, each Ge‐atom of 1 is coordinated by two pyca ligands and two OH? groups (Fig. 1). These molecules are bonded to each other via a system of H‐bonds resulting in a sheet‐like structure (Fig. 2). The complex is decomposed during heating with stepwise mass loss and formation of GeO2 as final product (Fig. 3).  相似文献   

14.
The preparation and characterization of three metal(II) chlorido complexes with 1,2‐di(1H‐tetrazol‐1‐yl)ethane (dte) ( 1 ) as ligand is presented. The complexes have the following formula: [CoCl2(μ‐dte)(dte)2]n ( 2 ), [CuCl2(μ‐dte)2]n ( 3 ), and [Cd(μ‐Cl)2(μ‐dte)]n ( 4 ). Single crystal X‐ray diffraction of all three metal complexes was performed and the structures are discussed. All three central metal atoms are connected to polynuclear structures by the μ‐bridging ligand. Cobalt and copper are connected to one‐dimensional chains. The central cadmium(II) atoms are additionally connected by the chloride anions to a two‐dimensional network. Further, the cobalt(II) complex represents a special case with two terminal dte ligands.  相似文献   

15.
Molecular and Crystal Structure of Bis[chloro(μ‐phenylimido)(η5‐pentamethylcyclopentadienyl)tantalum(IV)](Ta–Ta), [{TaCl(μ‐NPh)Cp*}2] Despite the steric hindrance of the central atom in [TaCl2(NPh)Cp*] (Ph = C6H5, Cp* = η5‐C5(CH3)5), caused by the Cp* ligand, the imido‐ligand takes a change in bond structure when this educt is reduced to the binuclear complex [{TaCl(μ‐NPh)Cp*}2] in which tantalum is stabilized in the unusual oxidation state +4.  相似文献   

16.
(PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] – a Nitrido‐Thionitrosyl‐Dinitridosulfato‐Complex of Rhenium The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with excess N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals after recrystallisation from acetonitrile/THF solutions. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] ( 1 ): Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 1024.1(1), b = 2350.2(1), c = 2315.4(2) pm, β = 94.09(1)°, R1 = 0.0403. In the complex anion of 1 the rhenium atoms are connected by an asymmetric Re≡N–Re bridge as well as by a (NSN)4–‐bridge to form a planar Re2N(NSN) six‐membered heterocycle. Both rhenium atoms are coordinated by three chlorine atoms, one of them by a thionitrosyl ligand, the other one by the oxygen atom of a thf molecule.  相似文献   

17.
The synthesis and characterization of Ru2Cl(μ‐O2CCH2CH2OMe)4 ( 1 ), [Ru2(μ‐O2CCH2CH2OMe)4(H2O)2]BF4 ( 2 ), PPh4[Ru2Cl2(μ‐O2CCH2CH2OMe)4] ( 3 ), (PPh4)2[Ru2Br2(μ‐O2CCH2CH2OMe)4]NO3 ( 4 ), and (PPh4)2[Ru2I2(μ‐O2CCH2CH2OMe)4]I0.5(NO3)0.5 ( 5 ), are described. The structure of complexes 2 – 5 was established by single crystal X‐ray diffraction. All complexes show a diruthenium(II, III) unit bridged by four 3‐methoxypropionate ligands. The cationic complex 2 have two axially coordinated water molecules, with a Ru–Ru bond distance of 2.2681(12) Å. This complex shows a supramolecular two‐dimensional organization across hydrogen bonded between the axial water molecules and two methoxy groups of adjacent diruthenium units. The metal‐metal bond lengths, in the anionic complexes 3 , 4 , and 5 , are 2.3039(5), 2.3077(6), and 2.3115(8) Å, respectively. These distances are longer than the observed in compound 2 . In the anionic complexes, the axial positions of the diruthenium units are occupied by two halide ligands. Complexes 3 – 5 have PPh4+ cations as counterion, although 4 and 5 are double salts with PPh4NO3 and PPh4I0.5(NO3)0.5, respectively. All compounds have been also characterized by elemental analysis, magnetic measurements, and spectroscopic techniques.  相似文献   

18.
Synthesis of Phosphido Chalcogenido Bridged Dirhenium Complexes of the Type Re2(μ‐PCy2)(μ‐ER)(CO)8 (E = S, Se, Te; R = org. Residue) The reaction of Re2(μ‐Br)(μ‐PCy2)(CO)8 with nucleophiles MER (M = Na, Li; E = S, Se, Te; R = org. residue) gives via substitution of the bromido bridge phosphido chalcogenido bridged dirhenium complexes of the general formula Re2(μ‐PCy2)(μ‐ER)(CO)8. The new compounds were characterized by IR, 1H and 13C NMR spectroscopic data and by elemental analyses. In addition the molecular structures for E = S, Se, Te and R = Ph as well as for E = S and R = H, n‐Bu, 2‐pyridyl have been established by single crystal X‐ray analysis. 13C NMR spectra of Re2(μ‐PCy2)(μ‐EPh)(CO)8 (E = S, Se, Te) prove that the sulfur and selenium compounds are at room temperature dynamic molecules due to inversion of the pyramidal chalcogenido bridge. The tellurium compound, however, is rigid on the time scale of 13C NMR spectroscopy. Eventually the reactivity of the SH function of the novel complex Re2(μ‐PCy2)(μ‐SH)(CO)8 was investigated by reaction with Re2(CO)8(MeCN)2. In toluene at 90 °C the novel spirocyclic complex Re2(μ‐PCy2)(CO)84‐S)Re2(μ‐H)(CO)8 was formed by SH oxidative addition.  相似文献   

19.
A μ3‐η222‐silane complex, [(Cp*Ru)33‐η222‐H3SitBu)(μ‐H)3] ( 2 a ; Cp*=η5‐C5Me5), was synthesized from the reaction of [{Cp*Ru(μ‐H)}33‐H)2] ( 1 ) with tBuSiH3. Complex 2 a is the first example of a silane ligand adopting a μ3‐η222 coordination mode. This unprecedented coordination mode was established by NMR and IR spectroscopy as well as X‐ray diffraction analysis and supported by a density functional study. Variable‐temperature NMR analysis implied that 2 a equilibrates with a tautomeric μ3‐silyl complex ( 3 a ). Although 3 a was not isolated, the corresponding μ3‐silyl complex, [(Cp*Ru)33‐η22‐H2SiPh)(H)(μ‐H)3] ( 3 b ), was obtained from the reaction of 1 with PhSiH3. Treatment of 2 a with PhSiH3 resulted in a silane exchange reaction, leading to the formation of 3 b accompanied by the elimination of tBuSiH3. This result indicates that the μ3‐silane complex can be regarded as an “arrested” intermediate for the oxidative addition/reductive elimination of a primary silane to a trinuclear site.  相似文献   

20.
Synthesis and Crystal Structure of the Complexes [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2PdCl2], [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 and [(n‐Bu)4N]2[Pd3Cl8] The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2 PdCl2] ( 1 ) is obtained in THF by the reaction of PdCl2(NCC6H5)2 with [(n‐Bu)4N][ReNCl4] in the molar ration 1:2. It forms orange crystals with the composition 1· THF crystallizing in the monoclinic space group C2/c with a = 2973.3(2); b = 1486.63(7); c = 1662.67(8)pm; β = 120.036(5)° and Z = 4. If the reaction is carried out with PdCl2 instead of PdCl2(NCC6H5)2, orange crystals of hitherto unknown [(n‐Bu)4N]2[Pd3Cl8] ( 3 ) are obtained besides some crystals of 1· THF. 3 crystallizes with the space group P1¯ and a = 1141.50(8), b = 1401.2(1), c = 1665.9(1)pm, α = 67.529(8)°, β = 81.960(9)°, γ = 66.813(8)° and Z = 2. In the centrosymmetric complex anion [{(THF)Cl4Re≡N}2PdCl2]2— a linear PdCl2 moiety is connected in trans arrangement with two complex fragments [(THF)Cl4Re≡N] via asymmetric nitrido bridges Re≡N‐Pd. For Pd(II) thereby results a square‐planar coordination PdCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 163.8(7)pm and Pd‐N = 194.1(7)pm. The crystal structure of 3 contains two symmetry independent, planar complexes [Pd3Cl8]2— with the symmetry 1¯, in which the Pd atoms are connected by slightly asymmetric chloro bridges. By the reaction of equimolar amounts of [Ph4P][ReNCl4] and PdCl2(NCC6H5)2 in THF brown crystals of the heterometallic complex, [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 ( 2 ) result. 2 crystallizes in the monoclinic space group P21/n with a = 979.55(9); b = 2221.5(1); c = 1523.1(2)pm; β = 100.33(1)° and Z = 2. In the central unit ClPd(μ‐Cl)2PdCl of the centrosymmetric anionic complex [(THF)Cl4Re≡N‐PdCl(μ‐Cl)]22— the coordination of the Pd atoms is completed by two nitrido bridges Re≡N‐Pd to nitrido complex fragments [(THF)Cl4Re≡N] forming a square‐planar arrangement for Pd(II). The distances in the linear nitrido bridges are Re‐N = 163.8(9)pm and Pd‐N = 191.5(9)pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号