首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Two ligands, bis(benzimidazol-2-ylmethyl) aniline (bba) and bis(N-methyl-benzimidazol-2-ylmethyl) aniline (Mebba), and their transition metal complexes [Zn(bba)(Br)2]·2DMF (1) and [Cu(Mebba)(Br)2]·2DMF (2) have been synthesized and characterized by elemental analyses, molar conductivities, UV–vis spectra, IR spectra, NMR spectroscopy, and X-ray crystallography. The structure around Zn(II) can be described as distorted tetrahedral. Complex 2 can be described as distorted trigonal bipyramidal. Cyclic voltammograms of 2 indicate a quasireversible Cu2+/Cu+ couple. Additionally, the antioxidant activities of the free ligands and their complexes were determined by the superoxide and hydroxyl radical scavenging methods in vitro. Complexes 1 and 2 possess potent hydroxyl radical scavenging activity and better than standard antioxidants such as vitamin C and mannitol. Complex 2 possesses excellent superoxide radical activity.  相似文献   

2.
Two aliphatic ether Schiff base lanthanide complexes (Ln = Eu, Ce) with bis(3‐methoxysalicylidene)‐3‐oxapentane‐1,5‐diamine (Bod), were synthesized and characterized by physicochemical and spectroscopic methods. [Eu(Bod)(NO3)3] ( 1 ) is a discrete mononuclear species and [Ce(Bod)(NO3)3DMF] ( 2 ) exhibits an inorganic coordination polymer. In the two complexes, the metal ions both are ten‐coordinated and the geometric structure around the LnIII atom can be described as distorted hexadecahedron. Under excitation at room temperature, the red shift in the fluorescence band of the ligand in the complexes compared with that of the free ligand can be attributed to coordination of the rare earth ions to the ligand. Moreover, the antioxidant activities of the two complexes were investigated. The results demonstrated that the complexes have better scavenging activity than both the ligand and the usual antioxidants on the hydroxyl and superoxide radicals.  相似文献   

3.
The Schiff base N,N′‐bis(salicylidene)‐1,5‐diamino‐3‐oxapentane (H2L) and its lanthanide(III) complexes, PrL(NO3)(DMF)(H2O) ( 1 ) and Ho2L2(NO3)2 · 2H2O ( 2 ), were synthesized and characterized by physicochemical and spectroscopic methods. Single crystal X‐ray structure analysis revealed that complex 1 is a discrete mononuclear species. The PrIII ion is nine‐coordinate, forming a distorted capped square antiprismatic arrangement. Complex 2 is a centrosymmetric dinuclear neutral entity in which the HoIII ion is eight‐coordinate with distorted square antiprismatic arrangement. The DNA‐binding properties of H2L and its LnIII complexes were investigated by spectrophotometric methods and viscosity measurements. The results suggest that the ligand H2L and its LnIII complexes both connect to DNA in a groove binding mode; the complexes bind more strongly to DNA than the ligand. Moreover, the antioxidant activities of the LnIII complexes were in vitro determined by superoxide and hydroxyl radical scavenging methods, which indicate that complexes 1 and 2 have OH · and O2– · radical scavenging activity.  相似文献   

4.
A new complex of copper(II) picrate (pic) with 1, 3‐bis(1‐allaylbenzimidazol‐2‐yl)‐2‐oxopropane (aobb), with the composition [Cu(aobb)2](pic)2, was synthesized and characterized. The crystal structure of the copper(II) complex revealed that the coordination environment around the central copper(II) atom is a distorted octahedral arrangement. Electronic absorption spectroscopy, ethidium bromide displacement experiments and viscosity measurements indicate that the ligand and the CuII complex can strongly bind to calf thymus DNA, presumably by an intercalation mechanism. Furthermore, the antioxidant activity of the CuII complex was determined by superoxide and hydroxyl radical scavenging method in vitro, which indicate that the CuII complex has the activity to suppress OH · and O2 · –.  相似文献   

5.
Two transition metal complexes, [Cu(FH)3]⋅2Cl⋅2H2O and [Ni(FH)3]⋅2Cl⋅2H2O, were synthesized from the reactions of furan‐2‐carboxylic acid hydrazide with CuCl2⋅2H2O and NiCl2⋅6H2O. The synthesized complexes were characterized using analytical and various spectral techniques. The structures of the complexes were determined using single‐crystal X‐ray diffraction. The interactions of the complexes with calf thymus DNA (CT‐DNA) were studied using absorption, fluorescence, cyclic voltammetric and viscosity measurements. The experimental results showed that the complexes could interact with CT‐DNA through intercalation. A gel electrophoresis assay demonstrated the ability of the complexes to cleave pBR322 DNA. The binding interaction of the complexes with bovine serum albumin was investigated using a fluorescence spectroscopic method. The radical scavenging ability, assessed using a series of antioxidant assays involving 2,2‐diphenyl‐2‐picrylhydrazyl radical, hydroxyl radical and nitric oxide radical, showed that the complexes possess significant radical scavenging properties. Further, the in vitro cytotoxic effect of the complexes examined on cancerous cell lines, such as human cervical cancer cells (HeLa) and human breast cancer cell line (MCF‐7), showed that the complexes exhibit significant anticancer activity.  相似文献   

6.
A heptacoordinated mononuclear cobalt(II) complex of tridentate bis(N‐ethylbenzimidazol‐2‐ylmethyl)aniline (Etbba) formulated as [Co(Etbba)(pic)2] · (MeCN) (pic = picrate), was synthesized and characterized by elemental analysis, electric conductivity measurements, as well as IR and UV/Vis spectroscopy. The crystal structure of the cobalt(II) complex was determined by single‐crystal X‐ray diffraction. The study shows the metal atom in a distorted monocapped octahedral arrangement that comprises two picrate molecules and one Etbba ligand molecule. The DNA‐binding properties of the cobalt(II) complex were investigated by electronic absorption and fluorescence spectroscopy, as well as viscosity measurements. The experimental results suggest that the cobalt(II) complex binds to DNA in an intercalating mode. In addition, the complex shows strong scavenging effects for hydroxyl radicals.  相似文献   

7.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

8.
Two bidentate Schiff base ligands (HL1 = Nn‐butyl‐4‐[(E)‐2‐(((2‐aminoethyl)imino)methyl)phenol]‐1,8‐naphthalimide; and HL2 = Nn‐butyl‐4‐[(E)‐2‐(((2‐aminoethyl)imino)methyl)‐6‐methoxyphenol]‐1,8‐naphthalimide) with their metal complexes [Cu(L1)2] ( 1 ), [Zn(L1)2(Py)]2?H2O ( 2 ) and [Ni(L2)2(DMF)2] ( 3 ) have been synthesized and characterized. Single‐crystal X‐ray structure analysis reveals that complex 1 has a four‐coordinated square geometry, while complex 2 is a five‐coordinated square pyramidal structure and complex 3 is a distorted six‐coordinated octahedral structure. Cyclic voltammograms of 1 indicate an irreversible Cu2+/Cu+ couple. In vitro antioxidant activity assay demonstrates that the ligands and the two complexes 1 and 3 display high scavenging activity against hydroxyl (HO?) and superoxide (O2??) radicals. Moreover, the fluorescence properties of the ligands and complexes 1 – 3 were studied in the solid state. Metal‐mediated enhancement is observed in 2 , whereas metal‐mediated fluorescence quenching occurs with 1 and 3 .  相似文献   

9.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

10.
Three coordination polymers, namely {[Cu(5‐nipa)(L22)](H2O)2}n ( 1 ), [Zn(5‐nipa)(L22)(H2O)]n ( 2 ), and {[Cd2(5‐nipa)2(L22)(H2O)3](H2O)3.6}n ( 3 ), were prepared under similar synthetic method based on 1,2‐(2‐pyridyl)‐1,2,4‐triazole (L22) and ancillary ligand 5‐nitro‐isophthalic acid (5‐H2nipa) with CuII, ZnII, and CdII perchlorate, respectively. All the complexes were characterized by IR spectroscopy, elemental analysis, and powder X‐ray diffraction (PXRD) patterns. Single‐crystal X‐ray diffraction indicates that complexes 1 and 2 show similar 1D chain structures, whereas complex 3 exhibits the 2D coordination network with hcb topology. The central metal atoms show distinct coordination arrangements ranging from distorted square‐pyramid for CuII in 1 , octahedron for ZnII in 2 , to pentagonal‐bipyramid for CdII in 3 . The L22 ligand adopts the same (η32) coordination fashion in complexes 1 – 3 , while the carboxyl groups of co‐ligand 5‐nipa2– adopt monodentate fashion in 1 and 2 and bidentate chelating mode in 3 . These results indicate that the choice of metal ions exerts a significant influence on governing the target complexes. Furthermore, thermal stabilities of complexes 1 – 3 and photoluminescent properties of 2 and 3 were also studied in the solid state.  相似文献   

11.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

12.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

13.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

14.
Fac‐bis(ethanolamine)orotatonickel(II), [Ni(HOr)(ea)2] and mer‐bis(ethanolamine)orotatocopper(II) dihydrate, [Cu(HOr)(ea)2]· 2H2O were synthesized and characterized by elemental analysis, FT‐IR, UV‐Vis Spectroscopy and thermal analysis. In addition, their solid‐state structures were determined by single crystal X‐ray diffraction studies. Both the fac‐[Ni(HOr)(ea)2] (1) and mer‐[Cu(HOr)(ea)2]·2H2O (2) complexes are isomorphous and crystallize in the triclinic space group . The Ni2+ and Cu2+ ions are coordinated by two neutral ea ligands and one orotate dianion in a distorted octahedral fashion. The ea ligand acts as a bidentate donor through the amine N and hydroxyl O atoms, while orotate dianion is coordinated through deprotonated N3 pyrimidine atom and carboxylate oxygen atom as a bidentate ligand. Thermal decompositions of the complexes are studied in over the range 20–600 °C on heating in a static air atmosphere.  相似文献   

15.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

16.
A series of mononuclear metal complexes of Co(III), Ni(II) and Cu(II) with 2‐(2,4‐dichlorobenzamido)‐N′‐(3,5‐di‐tert‐butyl‐2‐hydroxybenzylidene)benzohydrazide ( LH 3 ) have been synthesized and characterized using various physico‐chemical, spectroscopic and single crystal X‐ray diffraction techniques. Structural studies of [Co( LH )( LH 2 )]·H2O ( 4 ) revealed the presence of both amido and imidol tautomeric forms of LH 3 , resulting in a distorted octahedral geometry around the Co(III) ion. [Ni( LH )(H2O)]·H2O ( 5 ) and [Cu( LH )(H2O)]·H2O ( 6 ) are isomorphous structures and crystallize in the monoclinic P21/c space group. The crystal structures of 4 , 5 and 6 are stabilized by hydrogen bonds formed by the enclathrated water molecules, C‐H···π and π···π interactions. Complexes along with the ligand ( LH 3 ) were screened for their in vivo anti‐inflammatory activity (carrageenan‐induced rat paw edema method) and in vitro antioxidant activity (DPPH free radical scavenging assay). Metal complexes have shown significant anti‐inflammatory and antioxidant potential.  相似文献   

17.
Treatment of copper(I) halides CuX (X = Cl, Br, I) with lithium 2‐(diphenylphosphanyl)anilide [Li(HL)] in THF led to the formation of hexanuclear copper(I) complexes [Cu6X2(HL)4] [X = Cl ( 1 ), Br ( 2 ), I ( 3 )]. In compounds 1 – 3 , the copper atoms are in a distorted octahedral arrangement and the amide ligands adopt a μ3‐κP,κ2N bridging mode. Additionally there are two μ2‐bridging halide ligands. Each of the [Cu6X2(HL)4] clusters comprises two copper atoms, which are surrounded by two amide nitrogen atoms in an almost linear coordination [Cu–N: 186.2(3)–188.0(3) pm] and four copper atoms, which are connected to an amide N atom, a P atom, and a halogen atom in a distorted trigonal planar fashion [Cu–N: 199.6(3)–202.3(3) pm)].  相似文献   

18.
The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

19.
In contrast to the UV‐photoinduced ligand photoionization of the flavonoid complexes of FeIII, redox reactions initiated in ligand‐to‐metal charge‐transfer excited states were observed on irradiation of the quercetin ( 1 ) and rutin ( 2 ) complexes of CuII. Solutions of complexes with stoichiometries [CuIIL2] (L=quercetin, rutin) and [CuII2Ln] (n=1, L=quercetin; n=3, L=rutin) were flash‐irradiated at 351 nm. Transient spectra observed in these experiments showed the formation of radical ligands corresponding to the one‐electron oxidation of L and the reduction of CuII to CuI. The radical ligands remained coordinated to the CuI centers, and the substitution reactions replacing them by solvent occurred with lifetimes τ<350 ns. These are lifetimes shorter than the known lifetimes (τ>1 ms) of the quercetin and rutin radical's decay.  相似文献   

20.
Three novel ligands H4Ln (n = 1–3) and their copper(II) and zinc(II) complexes were prepared and characterized on the basis of elemental analyses, molar conductivity, 1H NMR, UV/Vis, and IR spectroscopy as well as mass spectrometry. DNA binding properties of the ligands and their complexes were investigated by absorption spectroscopy, ethidium bromide displacement experiments, and viscosity measurements. The experimental results indicate that the new ligands and their complexes can bind to DNA and the binding affinities of the complexes are higher than those of the ligands. In addition, the antioxidant activity of the ligands and complexes was determined by superoxide and hydroxyl radical scavenging methods in vitro, indicating that the complexes exhibit more effective antioxidant activity than the ligands alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号