首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioactive conformations of peptides can be stabilized by macrocyclization, resulting in increased target affinity and activity. Such macrocyclic peptides proved useful as modulators of biological functions, in particular as inhibitors of protein–protein interactions (PPI). However, most peptide‐derived PPI inhibitors involve stabilized α‐helices, leaving a large number of secondary structures unaddressed. Herein, we present a rational approach towards stabilization of an irregular peptide structure, using hydrophobic cross‐links that replace residues crucially involved in target binding. The molecular basis of this interaction was elucidated by X‐ray crystallography and isothermal titration calorimetry. The resulting cross‐linked peptides inhibit the interaction between human adaptor protein 14‐3‐3 and virulence factor exoenzyme S. Taking into consideration that irregular peptide structures participate widely in PPIs, this approach provides access to novel peptide‐derived inhibitors.  相似文献   

2.
Developing clinically relevant synthetic agents that are capable of disrupting protein‐protein interactions (PPIs) is now a major goal of scientific research. In an effort to explore new methodologies that are applicable to the design of synthetic PPI inhibitors, we examined a strategy based on the assembly of small module compounds to create multivalent mid‐sized agents. This personal account describes three particular approaches based on module assembly: metal‐chelating‐based ligand assembly, covalent chemical ligation templated by a targeted protein, and bivalent inhibitor design for simultaneous targeting of the active pocket and protein surface. These strategies were shown to be useful for synthesizing minimally sized synthetic agents for targeting PPIs and may enable development of agents that are applicable to inhibition of intracellular PPIs.  相似文献   

3.
The natural product family of fusicoccanes are stabilizers of 14‐3‐3 mediated protein–protein interactions (PPIs), some of which possess antitumor activity. In this study, the first use of molecular dynamics (MD) to rationally design PPI stabilizers with increased potency is presented. Synthesis of a focused library, with subsequent characterization by fluorescence polarization, mutational studies, and X‐ray crystallography confirmed the power of the MD‐based design approach, revealing the potential for an additional hydrogen bond with the 14‐3‐3 protein to lead to significantly increased potency. Additionally, these compounds exert their action in a cellular environment with increased potency. The newly found polar interaction could provide an anchoring point for new small‐molecule PPI stabilizers. These results facilitate the development of fusicoccanes towards drugs or tool compounds, as well as allowing the study of the fundamental principles behind PPI stabilization.  相似文献   

4.
Protein–protein interactions (PPIs) of 14-3-3 proteins are a model system for studying PPI stabilization. The complex natural product Fusicoccin A stabilizes many 14-3-3 PPIs but is not amenable for use in SAR studies, motivating the search for more drug-like chemical matter. However, drug-like 14-3-3 PPI stabilizers enabling such studies have remained elusive. An X-ray crystal structure of a PPI in complex with an extremely low potency stabilizer uncovered an unexpected non-protein interacting, ligand-chelated Mg2+ leading to the discovery of metal-ion-dependent 14-3-3 PPI stabilization potency. This originates from a novel chelation-controlled bioactive conformation stabilization effect. Metal chelation has been associated with pan-assay interference compounds (PAINS) and frequent hitter behavior, but chelation can evidently also lead to true potency gains and find use as a medicinal chemistry strategy to guide compound optimization. To demonstrate this, we exploited the effect to design the first potent, selective, and drug-like 14-3-3 PPI stabilizers.  相似文献   

5.
Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure‐based design of PPI inhibitors through stabilizing or mimicking turns, β‐sheets, and helices.  相似文献   

6.
The design of inhibitors of intracellular protein–protein interactions (PPIs) remains a challenge in chemical biology and drug discovery. We propose a cyclized helix‐loop‐helix (cHLH) peptide as a scaffold for generating cell‐permeable PPI inhibitors through bifunctional grafting: epitope grafting to provide binding activity, and arginine grafting to endow cell‐permeability. To inhibit p53–HDM2 interactions, the p53 epitope was grafted onto the C‐terminal helix and six Arg residues were grafted onto another helix. The designed peptide cHLHp53‐R showed high inhibitory activity for this interaction, and computational analysis suggested a binding mode for HDM2. Confocal microscopy of cells treated with fluorescently labeled cHLHp53‐R revealed cell membrane penetration and cytosolic localization. The peptide inhibited the growth of HCT116 and LnCap cancer cells. This strategy of bifunctional grafting onto a well‐structured peptide scaffold could facilitate the generation of inhibitors for intracellular PPIs.  相似文献   

7.
Modulation of protein–protein interactions (PPIs) is a highly demanding, but also a very promising approach in chemical biology and targeted drug discovery. In contrast to inhibiting PPIs with small, chemically tractable molecules, stabilisation of these interactions can only be achieved with complex natural products, like rapamycin, FK506, taxol, forskolin, brefeldin and fusicoccin. Fusicoccin stabilises the activatory complex of the plant H+‐ATPase PMA2 and 14‐3‐3 proteins. Recently, we have shown that the stabilising effect of fusicoccin could be mimicked by a trisubstituted pyrrolinone (pyrrolidone1, 1 ). Here, we report the synthesis, functional activity and crystal structure of derivatives of 1 that stabilise the 14‐3‐3–PMA2 complex. With a limited compound collection three modifications that are important for activity enhancement could be determined: 1) conversion of the pyrrolinone scaffold into a pyrazole, 2) introduction of a tetrazole moiety to the phenyl ring that contacts PMA2, and 3) addition of a bromine to the phenyl ring that exclusively contacts the 14‐3‐3 protein. The crystal structure of a pyrazole derivative of 1 in complex with 14‐3‐3 and PMA2 revealed that the more rigid core of this molecule positions the stabiliser deeper into the rim of the interface, enlarging especially the contact surface to PMA2. Combination of the aforementioned features gave rise to a molecule ( 37 ) that displays a threefold increase in stabilising the 14‐3‐3–PMA2 complex over 1 . Compound 37 and the other active derivatives show no effect on two other important 14‐3‐3 protein–protein interactions, that is, with CRaf and p53. This is the first study that describes the successful optimisation of a PPI stabiliser identified by screening.  相似文献   

8.
Inhibition of protein–protein interactions (PPIs) represents a major challenge in chemical biology and drug discovery. α‐Helix mediated PPIs may be amenable to modulation using generic chemotypes, termed “proteomimetics”, which can be assembled in a modular manner to reproduce the vectoral presentation of key side chains found on a helical motif from one partner within the PPI. In this work, it is demonstrated that by using a library of N‐alkylated aromatic oligoamide helix mimetics, potent helix mimetics which reproduce their biophysical binding selectivity in a cellular context can be identified.  相似文献   

9.
Protein–protein interactions (PPIs) are key therapeutic targets. Most PPI-targeting drugs in the clinic inhibit these important interactions; however, stabilising PPIs is an attractive alternative in cases where a PPI is disrupted in a disease state. The discovery of novel PPI stabilisers has been hindered due to the lack of tools available to monitor PPI stabilisation. Moreover, for PPI stabilisation to be detected, both the stoichiometry of binding and the shift this has on the binding equilibria need to be monitored simultaneously. Here, we show the power of native mass spectrometry (MS) in the rapid search for PPI stabilisers. To demonstrate its capability, we focussed on three PPIs between the eukaryotic regulatory protein 14-3-3σ and its binding partners estrogen receptor ERα, the tumour suppressor p53, and the kinase LRRK2, whose interactions upon the addition of a small molecule, fusicoccin A, are differentially stabilised. Within a single measurement the stoichiometry and binding equilibria between 14-3-3 and each of its binding partners was evident. Upon addition of the fusicoccin A stabiliser, a dramatic shift in binding equilibria was observed with the 14-3-3:ERα complex compared with the 14-3-3:p53 and 14-3-3:LRRK2 complexes. Our results highlight how native MS can not only distinguish the ability of stabilisers to modulate PPIs, but also give important insights into the dynamics of ternary complex formation. Finally, we show how native MS can be used as a screening tool to search for PPI stabilisers, highlighting its potential role as a primary screening technology in the hunt for novel therapeutic PPI stabilisers.

Stabilising protein–protein interactions is challenging, yet therapeutically important. Native mass spectrometry can be used to monitor binding equilibria, allowing identification and measurement of novel protein–protein interaction stabilisers.  相似文献   

10.
Protein–protein interactions (PPIs) are central to biological mechanisms, and can serve as compelling targets for drug discovery. Yet, the discovery of small molecule inhibitors of PPIs remains challenging given the large and typically shallow topography of the interacting protein surfaces. Here, we describe a general approach to the discovery of orthosteric PPI inhibitors that mimic specific secondary protein structures. Initially, hot residues at protein–protein interfaces are identified in silico or from experimental data, and incorporated into secondary structure-based queries. Virtual libraries of small molecules are then shape-matched against the queries, and promising ligands docked to target proteins. The approach is exemplified experimentally using two unrelated PPIs that are mediated by an α-helix (p53/hDM2) and a β-strand (GKAP/SHANK1-PDZ). In each case, selective PPI inhibitors are discovered with low μM activity as determined by a combination of fluorescence anisotropy and 1H–15N HSQC experiments. In addition, hit expansion yields a series of PPI inhibitors with defined structure–activity relationships. It is envisaged that the generality of the approach will enable discovery of inhibitors of a wide range of unrelated secondary structure-mediated PPIs.

Small-molecule protein–protein interaction inhibitors were prioritised on the basis of shape similarity to secondary structure-based queries incorporating hot-spot residues.  相似文献   

11.
We report on a stabilizer of the interaction between 14‐3‐3ζ and the Estrogen Receptor alpha (ERα). ERα is a driver in the majority of breast cancers and 14‐3‐3 proteins are negative regulators of this nuclear receptor, making the stabilization of this protein‐protein interaction (PPI) an interesting strategy. The stabilizer ( 1 ) consists of three symmetric peptidic arms containing an arginine mimetic, previously described as the GCP motif. 1 stabilizes the 14‐3‐3ζ/ERα interaction synergistically with the natural product Fusicoccin‐A and was thus hypothesized to bind to a different site. This is supported by computational analysis of 1 binding to the binary complex of 14‐3‐3 and an ERα‐derived phosphopeptide. Furthermore, 1 shows selectivity towards 14‐3‐3ζ/ERα interaction over other 14‐3‐3 client‐derived phosphomotifs. These data provide a solid support of a new binding mode for a supramolecular 14‐3‐3ζ/ERα PPI stabilizer.  相似文献   

12.
Poly(ADP‐ribose)polymerase‐1 (PARP1) is a BRCT‐containing enzyme (BRCT=BRCA1 C‐terminus) mainly involved in DNA repair and damage response and a validated target for cancer treatment. Small‐molecule inhibitors that target the PARP1 catalytic domain have been actively pursued as anticancer drugs, but are potentially problematic owing to a lack of selectivity. Compounds that are capable of disrupting protein–protein interactions of PARP1 provide an alternative by inhibiting its activities with improved selectivity profiles. Herein, by establishing a high‐throughput microplate‐based assay suitable for screening potential PPI inhibitors of the PARP1 BRCT domain, we have discovered that (±)‐gossypol, a natural product with a number of known biological activities, possesses novel PARP1 inhibitory activity both in vitro and in cancer cells and presumably acts through disruption of protein–protein interactions. As the first known cell‐permeable small‐molecule PPI inhibitor of PAPR1, we further established that (?)‐gossypol was likely the causative agent of PARP1 inhibition by promoting the formation of a 1:2 compound/PARP1 complex by reversible formation of a covalent imine linkage.  相似文献   

13.
Protein–protein interactions (PPIs) are implicated in the majority of cellular processes by enabling and regulating the function of individual proteins. Thus, PPIs represent high-value, but challenging targets for therapeutic intervention. The development of constrained peptides represents an emerging strategy to generate peptide-based PPI inhibitors, typically mediated by α-helices. The approach can confer significant benefits including enhanced affinity, stability and cellular penetration and is ingrained in the premise that pre-organization simultaneously pays the entropic cost of binding, prevents a peptide from adopting a protease compliant β-strand conformation and shields the hydrophilic amides from the hydrophobic membrane. This conceptual blueprint for the empirical design of peptide-based PPI inhibitors is an exciting and potentially lucrative way to effect successful PPI inhibitor drug-discovery. However, a plethora of more subtle effects may arise from the introduction of a constraint that include changes to binding dynamics, the mode of recognition and molecular properties. In this review, we summarise the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour across a range of constraining chemistries and targets, to highlight the tremendous success that has been achieved with constrained peptides alongside emerging design opportunities and challenges.

This review summarizes the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour for peptides targeting α-helix mediated protein–protein interactions.  相似文献   

14.
Protein–protein interactions (PPIs) provide a rich source of potential targets for drug discovery and biomedical science research. However, the identification of structural-diverse starting points for discovery of PPI inhibitors remains a significant challenge. Activity-directed synthesis (ADS), a function-driven discovery approach, was harnessed in the discovery of the p53/hDM2 PPI. Over two rounds of ADS, 346 microscale reactions were performed, with prioritisation on the basis of the activity of the resulting product mixtures. Four distinct and novel series of PPI inhibitors were discovered that, through biophysical characterisation, were shown to have promising ligand efficiencies. It was thus shown that ADS can facilitate ligand discovery for a target that does not have a defined small-molecule binding site, and can provide distinctive starting points for the discovery of PPI inhibitors.  相似文献   

15.
The development of inhibitors of intracellular protein–protein interactions (PPIs) is of great significance for drug discovery, but the generation of a cell-permeable molecule with high affinity to protein is challenging. Oligo(N-substituted glycines) (oligo-NSGs), referred to as peptoids, are attractive as potential intracellular PPI inhibitors owing to their high membrane permeability. However, their intrinsically flexible backbones make the rational design of inhibitors difficult. Here, we propose a peptoid-based rational approach to develop cell-permeable PPI inhibitors using oligo(N-substituted alanines) (oligo-NSAs). The rigid structures of oligo-NSAs enable independent optimization of each N-substituent to improve binding affinity and membrane permeability, while preserving the backbone shape. A molecule with optimized N-substituents inhibited a target PPI in cells, which demonstrated the utility of oligo-NSA as a reprogrammable template to develop intracellular PPI inhibitors.

A peptoid-based modular approach using oligo(N-substituted alanine) as a reprogrammable template enables independent optimization of N-substituents and facile development of cell-permeable inhibitors of protein–protein interactions.  相似文献   

16.
Targeted therapy is currently a hot topic in the fields of cancer research and drug design. An important requirement for this approach is the development of potent and selective inhibitors for the identified target protein. However, current ways to estimate inhibitor efficacy rely on empirical protein–ligand interaction scoring functions which, suffering from their heavy parameterizations, often lead to a low accuracy. In this work, we develop a nonfitting scoring function, which consists of three terms: (1) gas‐phase protein‐ligand binding enthalpy obtained by the eXtended ONIOM hybrid method based on an integration of density functional theory (DFT) methods (XYG3 and ωB97X‐D) and the semiempirical PM6 method, (2) solvation free energy based on DFT‐SMD solvation model, and (3) entropy effect estimated by using DFT frequency analysis. The new scoring function is tested on a cyclin‐dependent kinase 2 (CDK2) inhibitor database including 76 CDK2 protein inhibitors and a p21‐activated kinase 1 (PAK1) inhibitor database including 20 organometallic PAK1 protein inhibitors. From the results, good correlations are found between the calculated scores and the experimental inhibitor efficacies with the square of correlation coefficient R2 of 0.76–0.88. This suggests a good predictive power of this scoring function. To the best of our knowledge, this is the first high level theory‐based nonfitting scoring function with such a good level of performance. This scoring function is recommended to be used in the final screening of lead structure derivatives. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Minimalist secondary structure mimics are typically made to resemble one interface in a protein–protein interaction (PPI), and thus perturb it. We recently proposed suitable chemotypes can be matched with interface regions directly, without regard for secondary structures. Here we describe a modular synthesis of a new chemotype 1 , simulation of its solution‐state conformational ensemble, and correlation of that with ideal secondary structures and real interface regions in PPIs. Scaffold 1 presents amino acid side‐chains that are quite separated from each other, in orientations that closely resemble ideal sheet or helical structures, similar non‐ideal structures at PPI interfaces, and regions of other PPI interfaces where the mimic conformation does not resemble any secondary structure. 68 different PPIs where conformations of 1 matched well were identified. A new method is also presented to determine the relevance of a minimalist mimic crystal structure to its solution conformations. Thus dld ‐ 1 faf crystallized in a conformation that is estimated to be 0.91 kcal mol?1 above the minimum energy solution state.  相似文献   

18.
Small-molecule stabilization of protein–protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a “bottom-up” approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine-forming fragments. The imine bond offers a covalent anchor for site-directed fragment targeting, whereas its transient nature enables efficient analysis of structure–activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65-subunit-derived peptide of NF-κB with the adapter protein 14-3-3. Those fragments that subsequently establish contacts with the p65-derived peptide, rather than with 14-3-3, efficiently stabilize the 14-3-3/p65 complex and offer novel starting points for molecular glues.  相似文献   

19.
Protein–protein interactions (PPIs) are regarded as important, but undruggable targets. Intrinsically disordered p53 transactivation domain (p53TAD) mediates PPI with mouse double minute 2 (MDM2), which is an attractive anticancer target for therapeutic intervention. Here, using aerolysin nanopores, we probed the p53TAD peptide/MDM2 interaction and its modulation by small-molecule PPI inhibitors or p53TAD phosphorylation. Although the p53TAD peptide showed short-lived (<100 ms) translocation, the protein complex induced the characteristic extraordinarily long-lived (0.1 s ∼ tens of min) current blockage, indicating that the MDM2 recruitment by p53TAD peptide almost fully occludes the pore. Simultaneously, the protein complex formation substantially reduced the event frequency of short-lived peptide translocation. Notably, the addition of small-molecule PPI inhibitors, Nutlin-3 and AMG232, or Thr18 phosphorylation of p53TAD peptide, were able to diminish the extraordinarily long-lived events and restore the short-lived translocation of the peptide rescued from the complex. Taken together, our results elucidate a novel mechanism of single-molecule sensing for analyzing PPIs and their inhibitors using aerolysin nanopores. This novel methodology may contribute to remarkable improvements in drug discovery targeted against undruggable PPIs.

Using aerolysin nanopores, we probed protein–protein interaction (PPI) between p53TAD and MDM2 and its modulation by small-molecule PPI inhibitors and p53TAD phosphorylation.  相似文献   

20.
Protein–protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES‐PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号