首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast (UF) NMR spectroscopy is an approach that yields 2D spectra in a single scan. This methodology has become a powerful analytical tool that is used in a large array of applications. However, UF NMR spectroscopy still suffers from an intrinsic low sensitivity, and from the need to compromise between sensitivity, spectral width, and resolution. In particular, the modulation of signal intensities by the spin–spin J‐coupling interaction (J‐modulation) impacts significantly on the intensities of the spectral peaks. This effect can lead to large sensitivity losses and even to missing spectral peaks, depending on the nature of the spin system. Herein, a general simulation package (Spinach) is used to describe J‐modulation effects in UF experiments. The results from simulations match with experimental data and the results of product operator calculations. Several methods are proposed to optimize the sensitivity in UF COSY spectra. The potential and drawbacks of the different strategies are also discussed. These approaches provide a way to adjust the sensitivity of UF experiments for a large range of applications.  相似文献   

2.
This paper presents results from a series of pulsed field gradient (PFG) NMR studies on lipophilic guanosine nucleosides that undergo cation‐templated assembly in organic solvents. The use of PFG‐NMR to measure diffusion coefficients for the different aggregates allowed us to observe the influences of cation, solvent and anion on the self‐assembly process. Three case studies are presented. In the first study, diffusion NMR confirmed formation of a hexadecameric G‐quadruplex [G 1 ]16 ? 4 K+ ? 4 pic? in CD3CN. Furthermore, hexadecamer formation from 5′‐TBDMS‐2′,3′‐isopropylidene G 1 and K+ picrate was shown to be a cooperative process in CD3CN. In the second study, diffusion NMR studies on 5′‐(3,5‐bis(methoxy)benzoyl)‐2′,3′‐isopropylidene G 4 showed that hierarchical self‐association of G8‐octamers is controlled by the K+ cation. Evidence for formation of both discrete G8‐octamers and G16‐hexadecamers in CD2Cl2 was obtained. The position of this octamer–hexadecamer equilibrium was shown to depend on the K+ concentration. In the third case, diffusion NMR was used to determine the size of a guanosine self‐assembly where NMR signal integration was ambiguous. Thus, both diffusion NMR and ESI‐MS show that 5′‐O‐acetyl‐2′,3′‐O‐isopropylidene G 7 and Na+ picrate form a doubly charged octamer [G 7 ]8 ? 2 Na+ ? 2 pic? 9 in CD2Cl2. The anion's role in stabilizing this particular complex is discussed. In all three cases the information gained from the diffusion NMR technique enabled us to better understand the self‐assembly processes, especially regarding the roles of cation, anion and solvent.  相似文献   

3.
4.
Melanin is the most widespread pigment in the animal kingdom. Despite its importance, its detailed structure and overall molecular architecture remain elusive. Both eumelanin (black) and pheomelanin (red) occur in the human body. These two melanin compounds show very different responses to UV‐radiation exposure, which could relate to their microscopic features. Herein, the structural properties and motional behavior of natural eu‐ and pheomelanin extracted from black and red human hair are investigated by means of solid‐state NMR spectroscopy. Several 1D and 2D NMR spectroscopic techniques were combined to highlight the differences between the two forms of the pigment. The quantitative analysis of the 1H NMR wide‐line spectra extracted from 2D 1H–13C LG‐WISE experiments revealed the presence of two dynamically distinguishable components in both forms. Remarkably, the more mobile fraction of the pigment showed a higher mobility with respect to the proteinaceous components that coexist in the melanosome, which is particularly evident for the red pigment. An explanation of the observed effects takes into account the different architecture of the proteinaceous matrix that constitutes the physical substrate onto which melanin polymerizes within the eu‐ and pheomelanosomes. Further insight into the molecular structure of the more mobile fraction of pheomelanin was also obtained by means of the analysis of 2D 1H–13C INEPT experiments. Our view is that not only structural features inherent in the pure pigment, but also the role of the matrix structure in defining the overall melanin supramolecular arrangement and the resulting dynamic behavior of the two melanin compounds should be taken into account to explain their functions. The reported results could pave a new way toward the explanation of the molecular origin of the differences in the photoprotection activity displayed by black and red melanin pigments.  相似文献   

5.
6.
The constitutions and absolute configurations of two previously unknown intermediates, (1S,2S,4S)-2-hydroxy-4-isopropylcyclohexane-1-carboxylate and (S)-3-isopropylpimelate, of anaerobic degradation of p-cymene in the bacterium Aromatoleum aromaticum pCyN1 are reported. These intermediates (as CoA esters) are involved in the further degradation of 4-isopropylbenzoyl-CoA formed by methyl group hydroxylation and subsequent oxidation of p-cymene. Proteogenomics indicated 4-isopropylbenzoyl-CoA degradation involves (i) a novel member of class I benzoyl-CoA reductase (BCR) as known from Thauera aromatica K172 and (ii) a modified β-oxidation pathway yielding 3-isopropylpimeloyl-CoA analogously to benzoyl-CoA degradation in Rhodopseudomonas palustris. Reference standards of all four diastereoisomers of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate as well as both enantiomers of 3-isopropylpimelate were obtained by stereoselective syntheses via methyl 4-isopropyl-2-oxocyclohexane-1-carboxylate. The stereogenic center carrying the isopropyl group was established using a rhodium-catalyzed asymmetric conjugate addition. X-ray crystallography revealed that the thermodynamically most stable stereoisomer of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate is formed during p-cymene degradation. Our findings imply that the reductive dearomatization of 4-isopropylbenzoyl-CoA by the BCR of A. aromaticum pCyN1 stereospecifically forms (S)-4-isopropyl-1,5-cyclohexadiene-1-carbonyl-CoA.  相似文献   

7.
Six photosensitive polyketides, malbranpyrroles A–F, were discovered from the thermophilic fungus Malbranchea sulfurea by using intact‐cell desorption/ionization on silicon mass (ICD‐MS) and LC‐SPE‐NMR. These two strategies facilitate the searching and structural determination of unstable natural products. The ICD‐MS indicated that only brown hyphae of M. sulfurea can produce malbranpyrroles. The biosynthetic pathway of malbranpyrroles was evidenced by 13C isotope precursors and amino acid feeding experiments. The cytotoxicity data revealed that the conformation of the conjugated system in malbranpyrroles does not affect cytotoxic potency against cancer cell lines. In addition, the chlorine atom was shown to be the pharmacophore for cytotoxicity.  相似文献   

8.
A dramatic effect is observed when acyclic N‐(2‐naphthamides) of medium‐chain 1‐amino‐2‐methylalkanes are partially ordered with the help of liposomes: the Cotton effect arising from π–π* transitions of the terminal naphthamide chromophor is enormously enhanced. This effect was exploited to assign the configuration of new polyketide peroxides such as 1 from the sponge Plakortis halichondroides.

  相似文献   


9.
Ruthenium(0) complexes modified by CyJohnPhos or RuPhos catalyze the successive C?C coupling of acetylenic aldehydes with α‐ketols to form [4+2] cycloadducts as single diastereomers. This method enables convergent construction of type II polyketide ring systems of the angucycline class.  相似文献   

10.
Apoptolidin A has been described among the top 0.1 % most‐cell‐selective cytotoxic agents to be evaluated in the NCI 60 cell line panel. The molecular structure of apoptolidin A consists of a 20‐membered macrolide with mono‐ and disaccharide moieties. In contrast to apoptolidin A, the aglycone (apoptolidinone) shows no cytotoxicity (>10 μM ) when evaluated against several tumor cell lines. Apoptolidin H, the C27 deglycosylated analogue of apoptolidin A, displayed sub‐micromolar activity against H292 lung carcinoma cells. Selective esterification of apoptolidins A and H with 5‐azidopentanoic acid afforded azido‐functionalized derivatives of potency equal to that of the parent macrolide. They also underwent strain‐promoted alkyne–azido cycloaddition reactions to provide access to fluorescent and biotin‐functionalized probes. Microscopy studies demonstrate apoptolidins A and H localize in the mitochondria of H292 human lung carcinoma cells.  相似文献   

11.
12.
The determination of the relative configuration of 1,3‐dimethyl‐substituted alkyl chains is possible by interpretation of 1H NMR shift differences. Additionally, assignments are feasible in a variety of deuterated solvents, because the corresponding shift differences are not significantly influenced by the solvent. The trends for Δδ values depending on functional groups adjacent to the stereogenic centers are shown. Based on a thorough comparison with literature data, the relative configuration of natural products can be predicted. For this purpose, we derived an empirical rule for the ranges in which Δδ values usually occur. Furthermore, we were able to proof the validity of our method by the successful prediction of the relative configuration for the polyketide natural product xylarinic acid A, which was confirmed by the asymmetric total synthesis of its enantiomer. Based on the proposed simple analysis of published 1H NMR data and the determination of the relevant chemical‐shift differences, we predicted the relative configurations of several previously unassigned natural products.  相似文献   

13.
14.
15.
Antimicrobial peptides and proteins represent an important class of plant defensive compounds against pathogens and provide a rich source of lead compounds in the field of drug discovery. We describe the effective preparation of the cysteine‐rich snakin‐1 and ‐2 antimicrobial peptides by using a combination of solid‐phase synthesis and native chemical ligation. A subsequent cysteine/cystine mediated oxidative folding to form the six internal disulfide bonds concurrently gave the folded proteins in 40–50 % yield. By comparative evaluation of mass spectrometry, HPLC, biological data and trypsin digest mapping of folded synthetic snakin‐2 compared to natural snakin‐2, we demonstrated that synthetic snakin‐2 possesses full antifungal activity and displayed similar chromatographic behaviour to natural snakin‐2. Trypsin digest analysis allowed tentative assignment of three of the purported six disulfide bonds.  相似文献   

16.
Astellatol and nitidasin belong to a subset of sesterterpenoids that share a sterically encumbered trans‐hydrindane motif with an isopropyl substituent. In addition, these natural products feature intriguing polycyclic ring systems, posing significant challenges for chemical synthesis. Herein, the evolution of our stereoselective strategy for isopropyl trans‐hydrindane sesterterpenoids is detailed. These endeavors included the synthesis of several building blocks, enabling studies toward all molecules of this terpenoid subclass, and of advanced intermediates of our initial route toward a biomimetic synthesis of astellatol. These findings provided the basis for a second‐generation and a third‐generation approach toward astellatol that eventually culminated in the enantioselective total synthesis of (?)‐nitidasin. In particular, a series of substrate‐controlled transformations to install the ten stereogenic centers of the target molecule was orchestrated and the carbocyclic backbone was forged in a convergent fashion. Furthermore, the progress toward the synthesis of astellatol is disclosed and insights into some observed yet unexpected diastereoselectivities by detailed quantum‐mechanical calculations are provided.  相似文献   

17.
18.
19.
The reisolation and structural revision of brassicicene D is described, and inspired us to reassign the core skeletons of brassicicenes C–H, J and K, ranging from dicyclopenta[a,d]cyclooctane to tricyclo[9.2.1.03,7]tetradecane using quantum‐chemical predictions and experimental validation strategies. Three novel, highly modified fusicoccanes, brassicicenes L–N, were also isolated from the fungus Alternaria brassicicola, and their structures were unequivocally established by spectroscopic data, ECD calculations, and crystallography. The reassigned structures represent the first class of bridgehead double‐bond‐containing natural products with a bicyclo[6.2.1]undecane carbon skeleton. Furthermore, their stabilities were first predicted with olefin strain energy calculations. Collectively, these findings extend our view of the application of computational predictions and biosynthetic logic‐based structure elucidation to address problems related to the structure and stability of natural products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号