首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bagasse is one of the waste crop materials highlighted as commercially viable for cellulosic bio-ethanol production via enzymatic conversion to release fermentable sugars. Genetically modified sugarcane expressing cellobiohydrolases (CBH), endoglucanase (EG), and β-glucosidases (BG) provide a more cost-effective route to cellulose breakdown compared to culturing these enzymes in microbial tanks. Hence, process monitoring of the concentration profile of these key cellulases in incoming batches of sugarcane is required for fiscal measures and bio-ethanol process control. The existing methods due to their non-specificity, requirement of trained analysts, low sample throughput, and low amenability to automation are unsuitable for this purpose. Therefore, this paper explores a membrane-based sample preparation method coupled to capillary zone electrophoresis (CZE) to quantify these enzymes. The maximum enzyme extraction efficiency was obtained by using a polyethersulfone membrane with molecular cut-off of 10 kDa. The use of 15 mM, pH 7.75, phosphate buffer resulted in CZE separation and quantification of CBH, EG, and BG within 10 min. Migration time reproducibility was between 0.56% and 0.7% and hence, suitable for use with automatic peak detection software. Therefore, the developed CZE method is suitable for at-line analysis of BG, CBH, and EG in every batch of harvested sugarcane.  相似文献   

2.
N&#;meth  Krisztina  Kremmer  Tibor  Kocsis  L&#;szl&#;  Visy  J&#;lia 《Chromatographia》2009,69(11):1307-1313

A novel capillary zone electrophoresis method was developed to investigate the glycoform heterogeneity of human serum α1-acid glycoprotein (AGP). The simultaneous application of a dimethyl polysiloxane coated capillary and oligoamine additives, particularly spermidine resulted in a more detailed separation of AGP glycoforms than reported previously. The relative distribution of AGP glycoforms in CZE was determined by baseline integration of peak areas and verified by peak-fitting analysis. Providing high purity of AGP samples suitable for CZE a schedule of isolation and purification steps including sample preparation and an improved technique of ion exchange chromatography was applied. Based on data obtained by CZE and on the serum AGP levels measured the serum concentrations of AGP glycoforms were calculated in cancer patients with Hodgkin and non-Hodgkin lymphoma, ovary carcinoma and melanoma compared to healthy donors. Results presented here demonstrated a significant increase in the serum concentration of the more acidic AGP fractions also indicating the overproduction of these glycoforms in cancer. In conclusion, our observations may raise the clinical diagnostic relevance of changes in the molecular heterogeneity of AGP detected by CZE in the various forms of malignant diseases.

  相似文献   

3.
A novel capillary zone electrophoresis method was developed to investigate the glycoform heterogeneity of human serum α1-acid glycoprotein (AGP). The simultaneous application of a dimethyl polysiloxane coated capillary and oligoamine additives, particularly spermidine resulted in a more detailed separation of AGP glycoforms than reported previously. The relative distribution of AGP glycoforms in CZE was determined by baseline integration of peak areas and verified by peak-fitting analysis. Providing high purity of AGP samples suitable for CZE a schedule of isolation and purification steps including sample preparation and an improved technique of ion exchange chromatography was applied. Based on data obtained by CZE and on the serum AGP levels measured the serum concentrations of AGP glycoforms were calculated in cancer patients with Hodgkin and non-Hodgkin lymphoma, ovary carcinoma and melanoma compared to healthy donors. Results presented here demonstrated a significant increase in the serum concentration of the more acidic AGP fractions also indicating the overproduction of these glycoforms in cancer. In conclusion, our observations may raise the clinical diagnostic relevance of changes in the molecular heterogeneity of AGP detected by CZE in the various forms of malignant diseases.  相似文献   

4.
This feasibility study deals with the use of preparative capillary isotachophoresis (CITP), operating in a discontinuous fractionation mode, to the separations and isolations of glycoforms of recombinant human erythropoietin (rhEPO). The preparative CITP separations were monitored by capillary zone electrophoresis (CZE) with a hydrodynamically closed separation unit. Such a CZE system, suppressing fluctuations of the migration data linked with fluctuations of EOF and hydrodynamic flow, made possible to evaluate and compare the preparative CITP separations performed within a longer time frame. Preparative CITP, carried out in the separation unit with coupled columns of enhanced sample loadability, separating 100 microg of rhEPO in a run lasting ca. 30 min, gave the production rate higher than 55 ng/s for the rhEPO glycoforms. The preparative separations included valve isolations of the glycoforms from the ITP stack into four or six fractions. Such numbers of the fractions corresponded to typical numbers of the major glycoform peaks as resolved in CZE of rhEPO. With respect to close effective mobilities of the glycoforms and a multicomponent nature of rhEPO, the fractions contained mixtures of glycoforms with the dominant glycoforms enriched 10-100-fold, relative to the original rhEPO sample.  相似文献   

5.
This paper reports the fractionation of recombinant human tissue plasminogen activator (rtPA) glycoforms, a complex mixture to demonstrate the high resolving power of capillary zone electrophoresis (CZE) and capillary isoelectric focusing (cIEF). rtPA is a glycoprotein with a complex carbohydrate structure. The electropherograms and IEF patterns have been discussed in light of the known carbohydrate structures of rtPA. rtPA was treated with neuraminidase which removes the sialic acids from the carbohydrate chains. The desialylated rtPA was analyzed by both CZE and IEF and the results were compared to those of untreated rtPA. The usefulness of CZE and cIEF in the characterization of glycoproteins proteins is also discussed.  相似文献   

6.
The influence of several operation conditions on separation of recombinant human erythropoietin glycoforms by capillary isoelectric focusing (cIEF) is explored. From this study it is deduced that in order to separate several glycoforms of erythropoietin, urea has to be added to sample, which should not be completely depleted of the excipients used in its formulation. On-line desalting does not provide separation enhancement for samples with high content of salt. Better resolution is obtained using a mixture of a broad and a narrow pH-range carrier ampholytes than with either one used separately. Under the experimental conditions, focusing voltages of 25 kV improve separation compared to lower and higher electric fields. Focusing times shorter than the time necessary for electric current to reach a minimum provide similar separations than longer focusing times at which a minimum value of the current has already been achieved. The optimized method allows the separation and quantitation in 12 min of at least seven bands containing glycoforms of recombinant erythropoietin with apparent isoelectric points in the range 3.78–4.69. Compared to flat-bed isoelectric focusing, cIEF provides better separation of bands of glycoforms in a shorter time, and allows quantitative determination. Capillary zone electrophoresis (CZE) gives rise to resolution of erythropoietin glycoforms similar to that obtained by cIEF. Although CZE requires a longer analysis time, its reproducibility in terms of peak area of glycoforms is better than in cIEF.  相似文献   

7.
Kubo K  Hattori A 《Electrophoresis》2001,22(16):3389-3394
The use of polyamines as electroosmotic modifiers has been shown to be effective in enhancing resolution of protein glycoforms in capillary zone electrophoresis (CZE) using a bare capillary tube. In this study, effectiveness was evaluated by using a polyacrylamide-coated capillary tube instead of a bare capillary tube. Electropherograms obtained in the presence of polyamines were inferior to those obtained in their absence with respect to resolution. Electrophoretic mobility of the proteins decreased and their peaks were broadened by polyamines bound to them. This unfavorable effect was dependent on both the species of polyamines and the pH values of the electrolyte buffer. The reduction of resolution caused by polyamines was in the following order: spermidine (SPD) approximately spermidine-tri-hydrochloride (SPD-HCI) > putrescine (PUT) > hexamethonium chloride (HMC). The observed effect can be ascribed to the formation of complexes between the proteins and the polyamines. In addition, for the bare capillary tube the complexes showed interaction with the inner surface, resulting in local suppression of electroosmosis and poor resolution. The high resolution obtained in the coated capillary tube was reduced in the presence of the polyamines. Thus, the use of the polyamines has a negative effect on the analysis of protein microheterogeneity as a result of protein-polyamine interaction.  相似文献   

8.
We report a feasibility study on using a microwave-induced helium plasma atomic emission detector (MIP-AED) as an on-line detector in capillary zone electrophoresis (CZE). To couple CZE to MIP-AED, we used an ion exchange membrane capillary to connect the separation capillary to the interfacing capillary. The outlet end of the interfacing capillary was placed directly in the discharge tube of the MIP-AED system. The electroosmotic flow generated in the separation capillary carried the analytes and the electrolyte buffer solution through the interfacing capillary into the MIP-AED discharge tube where the analytes were detected. The performance of the CZE/MIP-AED system was evaluated with trimethyltin chloride, dimethyltin dichloride, n-propanol, and 2-butanone. The preliminary results indicate that the MIP-AED can be used in CZE to provide element-specific detection for target analytes.  相似文献   

9.
《Electrophoresis》2018,39(16):2069-2082
High‐resolution capillary zone electrophoresis – mass spectrometry (CZE‐MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle‐down and intact CZE‐MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post‐translational modifications (PTMs) and glycosylation structures. Middle‐down and intact CZE separations were performed in an acidified methanol‐water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle‐down analysis of the IdeS‐digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X‐deamidated, 1X‐deamidated, and non‐deamidated forms at baseline resolution. In the course of the middle‐down CZE‐MS analysis, separation of glycoforms of the FC/2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE‐MS2. Incorporation of TCEP‐HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE‐MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X‐glycosylated, 1X‐glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE‐MS represents a complementary approach to the more conventional liquid‐chromatography – mass spectrometry‐based approaches.  相似文献   

10.
The effect of high electric field in capillary zone electrophoresis (CZE) was evaluated for the study of the thermally induced unfolding of Bungarus fasciatus acetylcholinesterase. This monomer enzyme is characterised by two interdependent uncommon structural features, the asymmetrical distribution of charged residues and a relatively low thermal denaturation temperature. Both traits were presumed to interfere in the thermal unfolding of this enzyme as investigated by CZE. This paper analyses the effect of high electric field on the behaviour of the enzyme native state. It is shown that increasing the applied field causes denaturation-like transition of the enzyme at a current power which does not induce excessive Joule heating in the capillary. The susceptibility to electric field of proteins like cholinesterases, with charge distribution anisotropy, large permanent dipole moment and notable molecular flexibility associated with moderate thermal stability, was subsequently discussed.  相似文献   

11.
The separation of human serum globulins into individual components was investigated by capillary zone electrophoresis (CZE) using a linear polyacrylamide-coated capillary at pH 7.4. Prior to CZE analysis of globulin components present in serum, it was found that it was necessary to remove albumin. Preparation of albumin-depleted human serum with a HiTrap Blue column allowed the detection of alpha- and beta-globulin components as a series of peaks. Almost all the peaks, both narrow and broad, observed in CZE analysis could be assigned to six globulin components (alpha1-acid-glycoprotein, alpha1 -antitrypsin, haptoglobin, alpha2-macroglobulin, Gc-globulin, and transferrin) by using the technique of antibody-based indirect detection. The CZE results, obtained from serum preparations from three healthy adults and six patients, showed that the CZE system might be capable of detecting qualitative differences among individuals with regard to individual globulin components.  相似文献   

12.
The effect of high electric field in capillary zone electrophoresis (CZE) was evaluated for the study of the thermally induced unfolding of Bungarus fasciatus acetylcholinesterase. This monomer enzyme is characterised by two interdependent uncommon structural features, the asymmetrical distribution of charged residues and a relatively low thermal denaturation temperature. Both traits were presumed to interfere in the thermal unfolding of this enzyme as investigated by CZE. This paper analyses the effect of high electric field on the behaviour of the enzyme native state. It is shown that increasing the applied field causes denaturation-like transition of the enzyme at a current power which does not induce excessive Joule heating in the capillary. The susceptibility to electric field of proteins like cholinesterases, with charge distribution anisotropy, large permanent dipole moment and notable molecular flexibility associated with moderate thermal stability, was subsequently discussed.  相似文献   

13.
寡糖的毛细管电泳分析   总被引:10,自引:0,他引:10  
常理文  腰锐锋 《分析化学》1994,22(10):975-979
多种寡糖经α-萘胺衍生化后,用硼砂作为电泳介质,实现了高效毛细管电泳分离。比较了毛细管区带电泳和胶束毛细管电动色谱分离寡糖α-萘胺衍生物的电泳行为,对影响分离度的诸因素进行了考察,选择了最佳分离条件。  相似文献   

14.
The present study describes a reproducible and quantitative capillary zone electrophoresis (CZE) method, which leads to the separation of nine forms (native, oxidized and glycated) of human serum albumin (HSA). In an attempt to identify the different species separated by this CZE method, the capillary electrophoresis was coupled to mass spectrometry using a sheath liquid interface, an optimized capillary coating and a suitable CE running buffer. CE-MS analyses confirmed the heterogeneity of albumin preparation and revealed new truncated and modified forms such as Advanced Glycation End products (AGEs). Assignment of the CZE peaks was carried out using specific antibodies, carboxypeptidase A or sample reduction before or during the CE separation. Thus, five HSA forms were unambiguously identified. Using this CZE method several albumin batches produced by slightly different fractionation ways could be discriminated. Furthermore, analyses of HSA preparations marketed by five pharmaceutical industries revealed that two therapeutic albumins, including that marketed by LFB, contained the highest proportion of native form and lower levels of oxidized forms.  相似文献   

15.
Fu X  Huang L  Gao F  Li W  Pang N  Zhai M  Liu H  Wu M 《Electrophoresis》2007,28(12):1958-1963
A hydrophilic basic polysaccharide, carboxymethyl chitosan (CMC) as a capillary coating is presented with a simple preparation procedure. The CMC-coated capillary showed a long lifetime of more than 100 runs, and had good tolerance to some organic solvents, 0.1 M HCl, 0.1 M NaOH, and 5 M urea. The run-to-run, day-to-day, and capillary-to-capillary RSDs for the CMC-coated capillary were all below 2.0% for the determination of EOF. Moreover, the coatings with different concentrations and molecular weights of CMC were also investigated. The CMC-coated capillary was successfully applied to separate basic proteins and recombinant human erythropoietin (rhEPO). Furthermore, several experimental parameters, such as the concentration and pH of the running buffer, temperature, and applied voltage, were optimized for the separation of rhEPO glycoforms. Comparison of an uncoated capillary with chitosan- and CMC-coated capillaries for the separation of rhEPO glycoforms was also discussed. The results demonstrated that rhEPO glycoforms can be well separated by a CMC-coated capillary within 8 min with good reproducibility and resolution. Finally, the volatile BGE HAc-NH4Ac was utilized to separate rhEPO for its further application with CE-MS, achieving a satisfactory result.  相似文献   

16.
Two modes of capillary electrophoresis (CE)--free-solution capillary zone electrophoresis (CZE) and sodium dodecyl sulfate capillary electrophoresis (SDS-CE) using a non-gel sieving matrix--have been developed for comparative analysis of low-molecular-mass 2S albumin isoforms from lupins. The albumin fraction and 2S albumins were separated in uncoated fused-silica capillary by CZE with 0.02 M phosphate buffer, pH 7.3, containing the sodium salt of phytic acid. The use of phytic acid (0.025 M) as buffer modifier and ion-pairing agent improved migration reproducibility, peak shape and separation efficiency. The reduced 2S albumins were separated by SDS-CE using a high concentration (0.3-0.5 M) mixture of tris(hydroxymethyl)aminomethane and borate buffers in uncoated fused-silica capillary. Of the various polymers used as non-gel sieving matrix, SDS-CE with a 10% dextran solution was found to be suitable for separation of 2S albumin polypeptides with molecular masses of 4,000-7,000 and 8,000-11,000. The addition of glycerol or ethylene glycol to the SDS separating buffer improved the resolution of polypeptides. The examined Lupinus species showed species-specific CZE and SDS-CE migration profiles of the 2S albumins.  相似文献   

17.
A highly heterogeneous glycoprotein, alpha1-acid glycoprotein, was resolved into their glycoforms by capillary electrophoresis using a surface-modified capillary in 20 mM acetate buffer (pH 4.2) containing 0.5% (w/v) hydroxypropylmethylcellulose. We collected the fractions containing each glycoform as nearly pure state by capillary electrophoresis, and examined the molecular masses of these glycoforms by matrix assisted laser desorption time-of-flight mass spectrometry. We also analyzed carbohydrate chains after releasing them with N-glycosidase F followed by fluorescent labeling with 8-aminopyrene-1,3,6-trisulfonate. We found that the separation of glycoforms was mostly due to the presence of multiantennary carbohydrate chains. We propose that the present technique is useful for the analysis of post translational modification of proteins with carbohydrate chains.  相似文献   

18.
Enzymes immobilized on the inner surface of an electrophoretic capillary were used to increase sensitivity and resolution in capillary zone electrophoresis (CZE). Sensitivity is enhanced by inserting a piece of capillary containing the immobilized enzyme into the main capillary, located before the detector, in order to transform the analyte into a product with a higher absorptivity. This approach was used to determine ethanol. In order to improve resolution, capillary pieces containing immobilized enzymes were inserted at various strategic positions along the electrophoretic capillary. On reaching the enzyme, the analyte was converted into a product with a high electrophoretic mobility, the migration time for which was a function of the position of the enzyme reactor. This approach was applied to the separation and determination of acetaldehyde and pyruvate. Finally, the proposed method was validated with the determination of ethanol, acetaldehyde, and pyruvate in beer and wine samples.  相似文献   

19.
Antibody coupled capillary electrophoresis was employed in the pre-concentration and detection of atrazine at the parts per billion (ppb) level. A 1000-fold increase in detection has been demonstrated in the use of IgG anti-atrazine monoclonal antibodies for the analysis of atrazine in well water by capillary zone electrophoresis (CZE) with UV-VIS detection. These results were confirmed by an enzyme linked immunosorbent assay (ELISA) specific for atrazine.  相似文献   

20.
Multidimensional separation techniques play an increasingly important role in separation science, especially for the analysis of complex samples such as proteins. The combination of reversed‐phase liquid chromatography in the nanoscale and CZE is especially beneficial due to their nearly orthogonal separation mechanism and well‐suited geometries/dimensions. Here, a heart‐cut nano‐LC–CZE–MS setup was developed utilizing for the first time a mechanical 4‐port valve as LC–CE interface. A model protein mixture containing four different protein species was first separated by nano LC followed by a heart‐cut transfer of individual LC peaks and subsequent CZE–MS analysis. In the CZE dimension, various glycoforms of one protein species were separated. Improved separation capabilities were achieved compared to the 1D methods, which was exemplarily shown for ribonuclease B and its different glycosylated forms. LODs in the lower μg/mL range were determined, which are considerably lower compared to traditional CZE–MS. In addition, this study represents the first application of an LC–CE–MS system for intact protein analysis. The nano‐LC–CZE–MS system is expected to be applicable to various other analytical challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号