首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new mixed ligand penta-coordinated square pyramidal ruthenium(II) complexes containing benzaldehyde or its substituents and triphenylphosphine or triphenylarsine have been synthesized and characterized. In the electronic spectra, three well-defined peaks in the visible region were observed and assigned to d-d transitions in D(4h) and low spin axially distortion from O(h) symmetry. The spectrochemical parameters of the complexes were calculated and placed the ligands in the middle of the spectrochemical series. The redox properties and stability of the complexes toward oxidation were related to the electron-withdrawing or releasing ability of the substituent in the phenyl ring of the benzaldehyde. The electron-withdrawing substituents stabilized Ru(2+) complexes, while electron-donating groups favored oxidation to Ru(3+). The mechanism and kinetics of the catalytic oxidation of benzyl alcohol by the complex [RuCl(2)(Pph(3))(C(6)H(5)CHO)(2)] in the presence of N-methylmorpholine-N-oxide have also been studied.  相似文献   

2.
A novel method for immobilizing porphyrins as well as metalloporphyrins (MPs) on polymeric supports was found, and it is the way to synchronously synthesize and immobilize porphyrins on polymeric microspheres. By using 4‐hydroxybenzaldehyde (HBA)‐bound crosslinked polystyrene (CPS) microspheres, pyrrole, and benzaldehyde in a solution as co‐reactants and through the Adler's reaction between solid–liquid phases, it was successfully realized to simultaneously synthesize and immobilize phenyl porphyrin (PP) on CPS microspheres, resulting in PP‐supported microspheres PP–CPS. With the same method, substituted PPs, 4‐chlorophenyl porphyrin (CPP) and 4‐nitrophenyl porphyrin (NPP), were also successfully immobilized on CPS microspheres by using substituted benzaldehydes, 4‐chlorobenzaldehyde and 4‐nitrobenzaldehyde, as one reactant in the solution, respectively, and other two porphyrin‐supported microspheres, CPP–CPS and NPP–CPS, were obtained. The effects of various factors on the process of synchronously synthesizing and immobilizing porphyrins on CPS microspheres were mainly studied. Further, the coordination reaction of cobalt salt with PP–CPS as well as CPP–CPS and NPP–CPS was conducted, forming three solid catalysts, CoPP–CPS, CoCPP–CPS, and CoNPP–CPS. The catalytic properties of these catalysts in the catalytic oxidation of ethylbenzene to acetophenone by dioxygen were preliminarily examined. The experimental results indicate that the Adler's reaction between solid–liquid phases, namely the reaction between HBA‐bound CPS microspheres and pyrrole as well as free benzaldehyde or analogs in the solution can favorably be carried out. For this process, the fitting protonic acid catalyst is p‐nitrobenzoic acid and appropriate solvent is dimethyl sulfoxide (DMSO). By comparison, the process of preparing CPP–CPS microspheres is easier to be carried out. The obtained three solid catalysts can effectively catalyze the oxidation of ethylbenzene to acetophenone by dioxygen. In comparison, the catalytic activity of CoNPP–CPS is the highest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A family of isoreticular metal-organic frameworks, based on the UiO-66 structure with NH2-, OH-, HSO3-, and NO2-substituted terephthalic acid, are synthesized and tested as catalysts in liquid-phase oxidation of propylene glycol (PG) with hydrogen peroxide and compared with the catalytic performances of unsubstituted UiO-66. The obtained materials are characterized by X-ray diffraction, FT-IR, thermogravimetric analysis (TGA), nuclear magnetic resonance spectroscopy (1H NMR), and Fourier-transform infrared spectroscopy (FT-IR) of adsorbed CO and scanning electron microscopy (SEM) methods. Hydroxyacetone (HA) is the main product over all X-UiO-66 catalysts under the reaction conditions used. The nature of substituent drastically affects the PG conversion and the oxidant utilization efficiency. The presence of electron-withdrawing groups in the organic linker leads to preferential heterotic activation of H2O2, whereas the increase of electron density around Zr active sites, promoted by electron-donating groups, enhances the unproductive homolytic oxidant decomposition. The insertion of NO2 group results in almost double increase in the HA yield (15.5 vs. 8.8%) and hydrogen peroxide utilization efficiency (98 vs. 36%) in comparison with the reaction catalyzed by H-UiO-66. The NO2-UiO-66 can be recycled without the loss of the catalytic activity and preserves its structure after the catalytic cycle.  相似文献   

4.
A new class of cationic gold nanoparticles (NPs) has been synthesised bearing benzyl moieties featuring –NO2 and –OMe groups to investigate the regioisomeric control of aromatic NP–protein recognition. In general, NPs bearing electron-withdrawing groups demonstrated higher binding affinities towards green fluorescent protein (GFP) than NPs bearing electron-donating groups. Significantly, a ~7.5- and ~4.3-fold increase in binding with GFP was observed for –NO2 groups in meta-position and para-position, respectively, while ortho-substitution showed binding similar to the unsubstituted ring. These findings demonstrated that the NP–protein interaction can be controlled by tuning the spatial orientation and the relative electronic properties of the aromatic substituents. This improved biomolecular recognition provides opportunities for enhanced biosensing and functional protein delivery to the cells.  相似文献   

5.
研究了金属有机骨架化合物NH2-Ga-MIL-53对多种N-苯基亚胺底物的Strecker反应的催化性能,研究结果表明:(1)NH2-Ga-MIL-53具有高度催化活性和良好的底物普适性;(2)亚胺底物上取代基的电子效应是影响催化反应速率的关键因素,在亚胺底物上引入给电子取代基团(如甲氧基和苯基)可以加快反应速率,引入吸电子取代基团(如三氟甲基和硝基)可降低反应速率;(3)亚胺底物上取代基的位置对于催化反应速率同样具有重要影响,在亚胺底物的邻位引入甲氧基取代基团时,反应速率加快得最明显;(4)作为非均相催化剂,NH2-Ga-MIL-53可循环使用9次而不失活且保持骨架结构不变;(5)NH2-Ga-MIL-53和Ga-MIL-53催化性能的对比结果表明,NH2-Ga-MIL-53结构中的氨基可以作为路易斯碱活性中心协同路易斯酸催化中心(Ga3+)有效促进strecker反应的进行。此外,由NH2-Ga-MIL-53、六水合硝酸镓和2-氨基对苯二甲酸对Strecker反应的催化效果的对比可知,NH2-Ga-MIL-53的孔结构是提高反应产物专一性的重要因素。  相似文献   

6.
In this study, a modular ligand structure was designed by altering the binding position of the phenyl group at backbone of hydrobenzoin. A series of regio isomeric substituted phthalonitriles derived from this modular C2-symmetric ligand was synthesized and characterized. Then, eight cobalt (II) phthalocyanines (CoPc) were obtained from the reaction of phthalonitrile derivatives with cobalt (II) chloride. The catalytic activities of synthesized cobalt (II) phthalocyanines were tested for benzyl alcohol oxidation in acetonitrile using tert-butylhydroperoxide as the oxygen source and in the presence of N-bromosuccinimide as an additive at 80 °C for 5 hr of the reaction. In this sense, the effect of substrate to catalyst ratio and oxidant to catalyst ratio have been studied in detail for getting the highest benzaldehyde selectivity (up to 83%). The effect of structural design of substituents at peripheral or non-peripheral positions of phthalocyanine skeleton on the catalytic activity performance of cobalt (II) phthalocyanines in benzyl alcohol oxidation was also clarified. All newly synthesized compounds are characterized by FT-IR, 1H NMR, IR, UV–Vis and MALDI-TOF MS spectral data.  相似文献   

7.
We described Ullmann homocoupling promoted by a Pd/biphenyl-based phosphine system using DMF as solvent. Using Hammett equation it is found that the rate determining step of the reaction depends on the electronic nature of substituents of aryl bromides. Increase the rate of reaction with decreasing the electron donating of the substituent from NH2 to H suggesting an oxidative addition step as the rate determining step. Decrease the rate of reaction with increasing the electron-withdrawing ability of the substituent from H to NO2 indicating a reductive elimination step as the rate determining step.  相似文献   

8.
9.
Arylation of adamantane-containing amines with iodobenzene in the presence of copper(I) and copper(II) compounds and various N,N-, N,O- and O,O-bidentate ligands was studied. The best results were obtained using the catalytic system CuI–rac-BINOL [1,1′-bi(naphthalen-2-ol)] (10/20 mol %). Reactions with iodobenzene derivatives containing electron-donor and electron-withdrawing substituents in the para position to the iodine atom were carried out under the optimal conditions.  相似文献   

10.
Co(III) corroles were investigated as efficient catalysts for the reduction of dioxygen in the presence of perchloric acid in both heterogeneous and homogeneous systems. The investigated compounds are (5,10,15-tris(pentafluorophenyl)corrole)cobalt (TPFCor)Co, (10-pentafluorophenyl-5,15-dimesitylcorrole)cobalt (F 5PhMes 2Cor)Co, and (5,10,15-trismesitylcorrole)cobalt (Mes 3Cor)Co, all of which contain bulky substituents at the three meso positions of the corrole macrocycle. Cyclic voltammetry and rotating ring-disk electrode voltammetry were used to examine the catalytic activity of the compounds when adsorbed on the surface of a graphite electrode in the presence of 1.0 M perchloric acid, and this data is compared to results for the homogeneous catalytic reduction of O 2 in benzonitrile containing 10 (-2) M HClO 4. The corroles were also investigated as to their redox properties in nonaqueous media. A reversible one-electron oxidation occurs at E 1/2 values between 0.42 and 0.89 V versus SCE depending upon the solvent and number of fluorine substituents on the compounds, and this is followed by a second reversible one-electron abstraction at E 1/2 = 0.86 to 1.18 V in CH 2Cl 2, THF, or PhCN. Two reductions of each corrole are also observed in the three solvents. A linear relationship is observed between E 1/2 for oxidation or reduction and the number of electron-withdrawing fluorine groups on the compounds, and the magnitude of the substituent effect is compared to what is observed in the case of tetraphenylporphyrins containing meso -substituted C 6F 5 substituents. The electrochemically generated forms of the corrole can exist with Co(I), Co(II), or Co(IV) central metal ions, and the site of the electron-transfer in each oxidation or reduction of the initial Co(III) complex was examined by UV-vis spectroelectrochemistry. ESR characterization was also used to characterize singly oxidized (F 5PhMes 2Cor)Co, which is unambiguously assigned as a Co(III) radical cation rather than the expected Co(IV) corrole with an unoxidized macrocyclic ring.  相似文献   

11.
We report synthesis and coordination properties of β-alkyl porphyrin derivatives bearing terpyridylphenyl substituents at the meso-position and propionate side chains at the β-positions. Rhenium(I) carbonyl ion was encapsulated not in the core but in the external terpyridyl ligand. Such porphyrin-terpyridine hybrid porphyrins can be potentially available for less-invasive imaging like SPECT.  相似文献   

12.
Iron and manganese porphyrins containing 2,6-di-tert-butylphenyl groups (R4PFeCl and R4PMnCl) have been synthesized to be further immobilized on silica gels via various spacers. The activity of these porphyrins in the oxidation of alkanes and alkenes by hydrogen peroxide has been studied. 2,6-Di-tert-butylphenol groups decrease the catalytic activity of porphyrins in oxidation processes.  相似文献   

13.
Manganese(V)–oxo–porphyrins are produced by the electron‐transfer oxidation of manganese–porphyrins with tris(2,2′‐bipyridine)ruthenium(III) ([Ru(bpy)3]3+; 2 equiv) in acetonitrile (CH3CN) containing water. The rate constants of the electron‐transfer oxidation of manganese–porphyrins have been determined and evaluated in light of the Marcus theory of electron transfer. Addition of [Ru(bpy)3]3+ to a solution of olefins (styrene and cyclohexene) in CH3CN containing water in the presence of a catalytic amount of manganese–porphyrins afforded epoxides, diols, and aldehydes efficiently. Epoxides were converted to the corresponding diols by hydrolysis, and were further oxidized to the corresponding aldehydes. The turnover numbers vary significantly depending on the type of manganese–porphyrin used owing to the difference in their oxidation potentials and the steric bulkiness of the ligand. Ethylbenzene was also oxidized to 1‐phenylethanol using manganese–porphyrins as electron‐transfer catalysts. The oxygen source in the substrate oxygenation was confirmed to be water by using 18O‐labeled water. The rate constant of the reaction of the manganese(V)–oxo species with cyclohexene was determined directly under single‐turnover conditions by monitoring the increase in absorbance attributable to the manganese(III) species produced in the reaction with cyclohexene. It has been shown that the rate‐determining step in the catalytic electron‐transfer oxygenation of cyclohexene is electron transfer from [Ru(bpy)3]3+ to the manganese–porphyrins.  相似文献   

14.
改进磺化路线制备了5种取代基及取代位置不同的水溶性磺酸卟啉,利用氢核磁共振波谱(1H NMR)、傅里叶变换红外光谱(FTIR)、紫外-可见吸收光谱(UV-Vis)及质谱(MS)等手段对产物进行表征及性质研究.将该系列卟啉作为光催化剂,用于催化氧化1,5-萘二酚的反应,主催化产物为5-羟基-1,4-萘二醌,转化率为78%~95%.实验发现,磺酸基团在苯环上的位置以及取代基的数目、电子效应及立体位阻效应均会对催化结果产生影响,其中磺酸根的位置至关重要.动力学研究结果表明该催化氧化过程为一级反应.探讨了该反应的反应机理.  相似文献   

15.
姜毅  李斐  黄芳  张彪彪  孙立成 《催化学报》2013,34(8):1489-1495
合成了一系列含有不同对位取代基团的吡啶轴向配体的单核钌化合物Ru(bda)(pic)2 (H2bda=2,2''-联吡啶-6,6''-二羧酸; pic=对甲基吡啶),对化合物的结构进行了核磁、质谱和X射线单晶衍射表征,并在中性和酸性条件下研究了这些化合物的电化学性质.以硝酸铈铵为氧化剂,对催化剂的催化活性进行了测试,并以[Ru(bpy)3]2+为光敏剂,S2O82-为电子牺牲剂,在三组分体系中考察了这些化合物的光催化活性.研究发现,在化学法水氧化反应中,化合物1由于其轴向配体4,4''-联吡啶在酸性条件下能够发生质子化,从而增强了吸电子效应,因此表现出最高的催化活性,催化循环数达到4000.在光催化水氧化反应中,化合物2因其轴向配体具有最强的吸电子能力而表现出最高的催化活性,反应2h的催化循环数达到270.结果表明,轴向配体的吸电子能力明显提高了这类Ru催化剂催化水氧化反应活性.  相似文献   

16.
Triple‐layered Ag@Co@Ni core–shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04@Co0.48@Ni0.48 showed the most distinct core–shell structure. Compared with its bimetallic core–shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04@Co0.48@Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt–nickel double shells surrounding the silver core in the special triple‐layered core–shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells.  相似文献   

17.
Steve Scheiner 《Chemphyschem》2023,24(9):e202200936
A chalcogen atom Y contains two separate σ-holes when in a R1YR2 molecular bonding pattern. Quantum chemical calculations consider competition between these two σ-holes to engage in a chalcogen bond (ChB) with a NH3 base. R groups considered include F, Br, I, and tert-butyl (tBu). Also examined is the situation where the Y lies within a chalcogenazole ring, where its neighbors are C and N. Both electron-withdrawing substituents R1 and R2 act cooperatively to deepen the two σ-holes, but the deeper of the two holes consistently lies opposite to the more electron-withdrawing group, and is also favored to form a stronger ChB. The formation of two simultaneous ChBs in a triad requires the Y atom to act as double electron acceptor, and so anti-cooperativity weakens each bond relative to the simple dyad. This effect is such that some of the shallower σ-holes are unable to form a ChB at all when a base occupies the other site.  相似文献   

18.
The effect of ππ stacking between substituted benzene and benzamide on the properties of –CONH2 functional group, as an important unit in the drugs activities, was studied at the M06-2X/6-311++G(d,p) level of theory. All substituents enhanced the ππ interaction energies, where a reasonably good correlation was found between the interaction energies and Hammett constants of substituents. A linear correlation is observed between the sum of electron charge density at the cage critical point ∑ρ ccp obtained from the atoms in molecules (AIM) analysis and the interaction energies, where both values grow up with electron-withdrawing substituents (EWSs). The electrostatic potential around the O and N atoms, the natural charges, and the dipole moment of C=O bond have been calculated to predict the ability of functional group on the electrophilic and nucleophilic attacks. The charge transfer increases the electrostatic potential around the benzamide functional group in the presence of electron-donating substituents (EDSs). EWSs increase the acidity of the N atom of the –NH2 group; a linear relationship is observed between the acidity calculated with the molecular electrostatic potential around the N atom and the natural valence orbital energies.  相似文献   

19.
In this work, the experimental synthesized bipyridines azo-bis(2-pyridine),4,4′-dimethyl-3,3′-dinitro-2,2′-azobipyridine, and N,N′-bis(3-nitro-2-pyridinyl)-methane-diamine and a set of designed bipyridines that have similar frameworks but different linkages and substituents were studied theoretically at the B3LYP/6-31G* level of density functional theory. The gas-phase heats of formation were predicted based on the isodesmic reactions, and the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. The crystal densities have been computed from molecular packing and results show that incorporation of –N=N–, –N=N(O)–, –CH=N–, and –NH–NH– into bipyridines is more favorable than –CH=CH– and –NH–CH2–NH– for increasing the density. The predicted detonation velocities (D) and detonation pressures (P) indicate that –NH2, –NO2, and –NF2 can enhance the detonation performance, and –NO2 and –NF2 are more favorable. Introducing –N=N–, –N=N(O)–, and –NH–NH– bridge groups into bipyridines is also favorable for improving their detonation performance. The oxidation of pyridine N always but that of –N=N– bridge does not always improve the detonation properties. E4–O, the derivative with –N=N– bridge and two –NF2 substituent groups, has the largest D (9.90 km/s) and P (47.47 GPa). An analysis of the bond dissociation energies shows that all derivatives have good thermal stability.  相似文献   

20.
利用紫外-可见分光光度计在乙醇介质中研究了合成的4种对位取代四苯基钴卟啉对过亚硝酸根分解的催化作用. 首次发现钴卟啉可以催化ONOO分解, 且对位带吸电子基团的钴卟啉比对位带供电子基团的钴卟啉催化活性高. TPPCoCl, T(p-CH3)PPCoCl, T(p-OCH3)PPCoCl和T(p-Cl)PPCoCl在乙醇中的kcat分别为1.69×102, 1.52×102, 1.43×102和1.20×103 mol-1•L•s-1. 动力学曲线和时间分辨谱证明这些钴卟啉是通过形成中间体催化过亚硝酸根分解的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号