首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在 s波超导体 /铁磁绝缘层 / d波超导体 Josephson结 (s/ FI/ d)中 ,考虑结界面铁磁绝缘层的磁散射和粗糙散射情况下 ,运用 Bd G方程和 FT的电流公式计算准粒子的输运系数及 s/ FI/ d结的直流 Josephson电流与温度 T、结两侧的相位差之间的关系。研究表明 :结界面的磁散射和粗造散射均抑制结中准粒子的 Andreev反射 ,降低了流过 s/ FI/ d结的直流 Josephson电流 ,直流Josephson电流 I随温度 T、相位差φ的变化曲线强烈地依赖于 d波超导体的晶轴方位  相似文献   

2.
Sergeenkov  S.  Araujo-Moreira  F. M. 《JETP Letters》2012,94(12):845-848
JETP Letters - An analog of the diaelastic effect is predicted to occur in a small Josephson contact with Josephson vortices manifesting itself as magnetic field induced softening of the contact...  相似文献   

3.
The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p) junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface. The phase dependence of the Josephson current I (φ) between s-wave and px-wave superconductor is predicted to be sin(2φ). The ferromagnet scattering effect, the barrier strength, and the roughness strength at interface suppress the dc currents in s/FI/p junction.  相似文献   

4.
Two novel phenomena in a weakly coupled granular superconductor under an applied stress are predicted on the basis of a recently suggested piezophase effect (a macroscopic quantum analog of the piezo-electric effect). Namely, the existence of a stress-induced paramagnetic moment in zero applied magnetic field (piezomagnetism) is considered, and its influence on the low-field magnetization (leading to a mechanically induced paramagnetic Meissner effect) is investigated. The conditions under which these effects can be experimentally measured in high-T c granular superconductors are discussed. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 1, 36–41 (10 July 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

5.
We predict the existence of surface waves in layered superconductors in the THz frequency range, below the Josephson plasma frequency omega J. This wave propagates along the vacuum-superconductor interface and dampens in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). This is the first prediction of propagating surface waves in any superconductor. These predicted surface Josephson plasma waves are important for different phenomena, including the complete suppression of the specular reflection from a sample (Wood's anomalies) and a huge enhancement of the wave absorption (which can be used as a THz detector).  相似文献   

6.
在s波超导体/铁磁绝缘层/s波超导体Josephson结(S/FI/S)中,考虑结界面铁磁绝缘层的磁散射和粗糙散射情况下,运用Bogoliubov-de(BdG)方程和Furusaki-Tsukada(FT)的电流公式计算准粒子的输运系数及S/FI/S结的直流Josephson电流与温度T,结两侧的相位差之间的关系,研究表明:结界面的磁散射和粗糙散射均抑制结中准粒子的Andreev反射,降低了流过S/FI/S结的直流Josephson电流。  相似文献   

7.
The Bogoliubov de Gennes equation is applied to the study ofcoherence effects in the ferromagnetic superconductor/insulator/normalmetal/insulator/ferromagnetic/superconductor (FS/I/N/I/FS) junction. We calculated the Josephson current in FS/I/N/I/FS as a function of exchange field in ferromagnetic superconductor, temperature, and normal metal thickness. It is found that the Josephson critical current in FS/I/N/I/FS exhibits oscillations as a function of the length of normal metal. The exchange field always suppresses the Josephson critical current Ip for a parallel configuration of the magnetic moments of two ferromagnetic superconductor (FS) electrodes. In the antiparallel configuration, the Josephson critical current IAp at the minimum values of oscillation increases with the exchange field for strong barrier strength and at low temperatures.  相似文献   

8.
郑东宁 《物理学报》2021,(1):164-177
超导现象是一种宏观量子现象.磁通量子化和约瑟夫森效应是两个最能体现这种宏观量子特性的物理现象.超导量子干涉器件(superconducting quantum interference device,SQUID)是利用这两个特性而形成的超导器件.SQUID器件在磁信号灵敏探测方面具有广泛的应用.本文简要介绍低温超导和高温超导SQUID器件的相关背景和发展现状以及应用领域.  相似文献   

9.
Modulation instability of nonlinear electromagnetic excitations (oscillating with the Josephson frequency) of finite amplitude is investigated in a Josephson junction in a film of a nonmagnetic, as well as of a magnetic (two-or three-dimensional), superconductor. The instability is accompanied by a nonlinear shift in frequency. Dispersion relations are derived for the time increment of small perturbations of the amplitude. It is shown that, for this type of excitations in a Josephson junction in a thin film of nonmagnetic superconductor, modulation instability develops only in a certain finite range of wave vectors, whereas in a thin film of a two-or three-dimensional magnetic superconductor it develops for any wave vector.  相似文献   

10.
于扬 《物理》2005,34(8):578-582
超导体中的电子结成库珀对,凝聚到可以用一个宏观波函数来描绘的能量基态,该波函数的位相是代表了成百万库珀对集体运动的宏观变量.以约瑟夫森结为基础元件的超导约瑟夫森器件,使人们能够控制并测量一个超导体的位相和库珀对数目,因此是研究宏观量子现象的理想系统.文章回顾了约瑟夫森器件中的宏观量子现象研究的发展历程,介绍了当前超导约瑟夫森器件在量子计算中的重要应用,并对它们的未来作了简要的展望.  相似文献   

11.
Josephson coupling between an s- and d-wave superconductor through a 50 nm thick Ca1-xSrxCuO2 antiferromagnetic layer was observed for the hybrid Nb/Au/Ca1-xSrxCuO2/YBa2Cu3O7-delta heterostructures and investigated as a function of temperature, magnetic field, and applied millimeter-wave electromagnetic radiation. The magnetic field dependence of the supercurrent I(c)(H) exhibits anomalously rapid oscillations, which is the first experimental evidence of the theoretically predicted giant magneto-oscillations in Josephson junctions with antiferromagnetic interlayers.  相似文献   

12.
Josephson current is investigated in the superconductor/ferromagnet/superconductor junction. It was shown that the current exhibited damping oscillations as a function of the ferromagnetic layer thickness. Previous theories based on Usadel or Eilenberger equations have predicted that the damping length and oscillation period divided by 2π were the same for weak ferromagnetic spacer. This contradicts past experiments. A new calculation of the Josephson current is proposed. The Gorkov equations are solved taking into account s–d scattering in ferromagnet. It is shown that the oscillation period depends only on the exchange magnetic field in the spacer, whereas the damping length is connected to the ferromagnetic mean free path. The concordance with the former experiment allows one to conclude that s–d scattering as a pair-breaking mechanism plays a significant role in the proximity effect in S/F heterostructures.  相似文献   

13.
Within a 2D model of Josephson junction arrays (created by a 2D network of twin boundary dislocations with strain fields acting as an insulating barrier between hole-rich domains in underdoped crystals), a few novel effects expected to occur in intrinsically granular material are predicted, including (i) Josephson chemomagnetism (chemically induced magnetic moment in zero applied magnetic field) and its influence on a low-field magnetization (chemically induced paramagnetic Meissner effect) and (ii) the magnetoconcentration effect (creation of oxygen vacancies in applied magnetic field) and its influence on a high-field magnetization (the chemically induced analogue of the “fishtail” anomaly). The conditions under which these effects can be experimentally measured in nonstoichiometric high-Tc superconductors are discussed.  相似文献   

14.
This paper solves a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation, and studies the Zeeman effects on the d-wave superconducting gap and thermodynamic potential. The Josephson currents in the d-wave superconductor(S)/insulating layer(I)/d-wave S junctions are calculated as a function of the temperature, exchange field, and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss. It is found that the Josephson critical currents in d-wave S/d-wave S junction to a great extent depend on the relative orientation of the effective exchange field of the two S electrodes, and the crystal orientation of the d-wave S. The exchange field under certain conditions can enhance the Josephson critical current in a d-wave S/I/d-wave S junction.  相似文献   

15.
A change in the effect of a frozen magnetic field parallel to the c-axis on rf power absorption, which is associated with the motion of Josephson vortices, is observed in the layered superconductor Bi2Sr2CaCu2O8 at a low temperature (~15 K). The effect is interpreted as a change in the interaction between an Abrikosov vortex and a Josephson vortex from attraction (at high temperatures) to repulsion (at low temperatures). It is found that the dynamics of the magnetic flux parallel to the ab plane of the single crystal becomes irreversible upon a transition of the superconductor to the layered state. Possible reasons behind the observed effect are considered, one of them being a manifestation of the second superconducting transition in the elementary-excitation spectrum of a d-type superconductor near the core of Abrikosov vortices.  相似文献   

16.
Because of the difference in the momenta of the superconducting order parameters, the Josephson current in a Josephson junction between a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductor and a conventional BCS superconductor is suppressed. We show that the Josephson current may be recovered by applying a magnetic field in the junction. The field strength and direction at which the supercurrent recovery occurs depend upon the momentum and structure of the order parameter in the FFLO state. Thus the Josephson effect provides an unambiguous way to detect the existence of an FFLO state, and to measure the momentum of the order parameter.  相似文献   

17.
We study the temperature T and the phase of the Josephson critical current I( φ ) by taking into account the roughness scattering effect at inerface in an f-wave superconductor (S)/Insulator layer (I)/f-wave superconductor (S) junction. It is found that the Josephson critical currents in f-wave S/f-wave S, the barrier strength and the roughness strength at inerface always suppress the Andreev reflection. When α =β, the phase dependence of theJosephson current I ( φ ) between two f-wave S is predicted to be sin φ; particularly, when α ≠β, the phase dependence of the Josephson current I( φ ) between two f-wave superconductors is not predicted to be sin φ and with the barrier strength increasing, the period of the I( φ ) turns decrease.  相似文献   

18.
s波超导体绝缘层dx2-y2波超导体结的直流Josephson电流   总被引:2,自引:0,他引:2       下载免费PDF全文
李晓薇  董正超  崔元顺 《物理学报》2002,51(6):1360-1365
在s波超导体绝缘层dx2-y2波超导体结(sId)中,考虑到结界面粗糙散射,运用BogoliubovdeGennes(BdG)方程和FurusakiTsukada(FT)电流公式,计算超导结中的准粒子传输系数和直流Josephson电流.结果表明:sId超导结的直流Josephson电流随温度以及结两侧的相位差变化的关系曲线强烈地依赖于d波超导体的晶轴方位;结界面的粗糙散射对Josephson电流有抑制作用 关键词: s/I/d超导结 dx2-y2波超导体 直流Josephson电流  相似文献   

19.
The new class of phenomena described in this review is based on the interaction between spatially separated, but closely located ferromagnets and superconductors, the so-called ferromagnet–superconductor hybrids (FSH). Typical FSH are: coupled uniform and textured ferromagnetic and superconducting films, magnetic dots over a superconducting film, magnetic nanowires in a superconducting matrix, etc. The interaction is provided by the magnetic field generated by magnetic textures and supercurrents. The magnetic flux from magnetic structures or topological defects can pin vortices or create them, changing the transport properties and transition temperature of the superconductor. On the other hand, the magnetic field from supercurrents (vortices) strongly interacts with the magnetic subsystem, leading to formation of coupled magnetic–superconducting topological defects.

The proximity of ferromagnetic layer dramatically changes the properties of the superconducting film. The exchange field in ferromagnets not only suppresses the Cooper-pair wavefunction, but also leads to its oscillations, which in turn leads to oscillations of observable values: the transition temperature and Josephson current. In particular, in the ground state of the Josephson junction the relative phase of two superconductors separated by a layer of ferromagnetic metal is equal to?π?instead of the usual zero (the so-called π-junction). Such a junction carries a spontaneous supercurrent and possesses other unusual properties. Theory predicts that rotation of magnetization transforms s-pairing into p-pairing. The latter is not suppressed by the exchange field and serves as a carrier of long-range interaction between superconductors.  相似文献   

20.
By means of the non-equilibrium Green's function technique, the inter-dot and Josephson currents in a superconductor/quantum-dot ring/superconductor (S/QDR/S) system are theoretically investigated. We found that a persistent current can coexist with the Josephson current in this hybrid QDR system when the inter-dot currents are all flowing in the clockwise (or anticlockwise) direction. The magnitude and direction of the persistent current can be controlled experimentally by the adjustment of some structure parameters, such as the quantum dot (QD) levels, the phase difference of the two external superconducting leads and the magnetic flux phase factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号