首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The condensation and evaporation of vapors of isopropanol, heptane, and cyclohexane in mesoporous silica photonic crystals are monitored by optical reflection spectroscopy as a function of sensor temperature. The spectral position of the stop band shifts to the red upon analyte adsorption, and it shifts to the blue as the sensor is heated and analyte evaporates from the porous nanostructure. The hysteresis of the optical response as the temperature of the sensor is cycled between 25 and 80 °C is characteristic of each analyte for partial pressures between 0 and 7.5 Torr. These characteristic hysteresis loops allow identification of the three analytes. The temporal response of the sensor is studied as a function of heating rate and analyte concentration in a flowing stream of analyte vapor, and it is compared with the equilibrium adsorption isotherms of the sensor. The ability of the temporal data to identify the analytes is attributed to differences in diffusion and adsorption properties of each analyte within the mesoporous silica sensor.  相似文献   

2.
In tungsten furnace electrothermal vaporization(ETV)-inductively coupled plasma mass spectrometry(ICP-MS), the presence of halogen matrices caused a signal enhancement for volatile elements such as Zn, Cd and Pb, whose halides melting and boiling points were relatively low. In order to clarify the mechanism of signal enhancement in ETV-ICP-MS, the effects of chemical interaction between analytes and halogen matrices on the surface of ETV furnace, the transport efficiency of vaporized analytes from the furnace into the ICP and the physical properties of the ICP itself and of the micro plasma (interface plasma) in the interface region between the sampling and the skimmer cones were investigated by atomic absorption and atomic emission spectrometry. Among the effects mentioned above, neither the chemical interaction on the surface of the ETV furnace nor the transport efficiency of vaporized analytes could be related to the analyte signal enhancements. The degree of enhancement was found to depend on the ionization potential of the coexisting halogen and was not caused by a variation in the physical properties of the ICP but rather by a variation of those of the interface plasma. These results suggest that the halogen matrices may affect the physical properties of the interface plasma, contributing to the promotion of the ionization of analytes.  相似文献   

3.
The introduction of various forms of molybdenum into an inductively coupled plasma was studied in the vaporization of solutions from a graphite tube. A temperature program is selected that enables the separated vaporization of analytes and molybdenum (matrix) for atomic emission spectrometry with inductively coupled plasma and electrothermal vapoization (ETV–ICP–AES) analysis. The limits of detection for analytes in the ETV–ICP–AES analysis of molybdenum trioxide are evaluated using the fractional separation of analytes and the matrix.  相似文献   

4.
The processes of sample fractionation by two-step atomization with the intermediate condensation of the analyte on a cold surface in graphite furnaces were theoretically studied. The transfer equation was solved for the atoms, molecules, and condensed particles of the sample from a flow of argon directed along this surface. The spatial distributions of vapor and the condensate formed were calculated depending on the composition and flow rate. It was found that a cold surface section with a length of 6 mm is sufficient for the complete trapping of atomic analyte vapor from an argon layer having a velocity of about 1 m/sec and a thickness of 5 mm. In this case, the molecules and clusters condensation coefficients smaller than unity were deposited insignificantly; that is, they were fractionally separated. The results of the shadow spectral visualization of the process of sample fractionation on a cold probe surface of in commercial HGA and THGA atomizers were interpreted. The advantages of analytical signals upon the evaporation of a sample condensate from the probe in these atomizers and inductively coupled plasma were demonstrated.  相似文献   

5.
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectrometry. A three‐dimensional porous coating was formed with carbon nanoparticles. In combination with high‐performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor‐by‐factor optimization method. The established method exhibited good linearity (0.01–10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2–106% and 93.4–108%, respectively. The results indicated that the carbon nanoparticle‐coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons.  相似文献   

6.
Adsorption dynamics and their influence on signal transduction for carbon nanotube-based chemical sensors are explored using continuum site balance equations and a mass action model. These sensors are shown to possess both reversible and irreversible binding sites that can be modeled independently. For the case of irreversible adsorption, it is shown that the characteristic response time scales inversely with analyte concentration. It is inappropriate to report a detection limit for this type of sensor since any nonzero analyte concentration can be detected in theory but at a cost of increasing transduction time with decreasing concentration. The response curve should examine the initial rate of signal change as a function of analyte concentration. Conversely, a reversible sensor has a predefined detection limit, independent of the detector geometry with a characteristic time scaling that becomes constant in the zero analyte concentration limit. A simple analytical test is presented to distinguish between these two mechanisms from the transient response of a nanotube sensor array. Two systems appearing in the literature are shown to have an irreversible component, and regressed surface rate constants for this component are similar across different sensor geometries and analytes.  相似文献   

7.
The gas sensing behaviors of cobalt phthalocyanine (CoPc) and metal-free phthalocyanine (H2Pc) thin films were investigated with respect to analyte basicity. Chemiresistive sensors were fabricated by deposition of 50 nm thick films on interdigitated gold electrodes via organic molecular beam epitaxy (OMBE). Time-dependent current responses of the films were measured at constant voltage during exposure to analyte vapor doses. The analytes spanned a range of electron donor and hydrogen-bonding strengths. It was found that, when the analyte exceeded a critical base strength, the device responses for CoPc correlated with Lewis basicity, and device responses for H2Pc correlated with hydrogen-bond basicity. This suggests that the analyte-phthalocyanine interaction is dominated by binding to the central cavity of the phthalocyanine with analyte coordination strength governing CoPc sensor responses and analyte hydrogen-bonding ability governing H2Pc sensor responses. The interactions between the phthalocyanine films and analytes were found to follow first-order kinetics. The influence of O2 on the film response was found to significantly affect sensor response and recovery. The increase of resistance generally observed for analyte binding can be attributed to hole destruction in the semiconductor film by oxygen displacement, as well as hole trapping by electron donor ligands.  相似文献   

8.
A new technique is suggested for obtaining nanoparticles from highly supersaturated vapor resulting from the laser photolysis of volatile compounds. The growth of carbon nanoparticles resulting from C3O2 photolysis has been studied in detail. Absorbing UV quanta (from an Ar-F excimer laser), C3O2 molecules decompose to yield atomic carbon vapor with precisely known and readily controllable parameters. This is followed by the condensation of supersaturated carbon vapor and the formation of carbon nanoparticles. These processes have been investigated by the laser extinction and laser-induced incandescence (LII) methods in wide ranges of experimental conditions (carbon vapor concentration, nature of the diluent gas, and gas pressure). The current and ultimate particle sizes and the kinetic parameters of particle growth have been determined. The characteristic time of particle growth ranges between 20 and 1000 μs, depending on photolysis conditions. The ultimate particle size determined by electron microscopy is 5–12 nm for all experimental conditions. It increases with increasing total gas pressure and carbon vapor partial pressure and depends on the diluent gas. The translational energy accommodation coefficients for the Ar, He, CO, and C3O2 molecules interacting with the carbon particle surface have been determined by comparing the LII and electron microscopic particle sizes. A simple model has been constructed to describe the condensation of carbon nanoparticles from supersaturated atomic vapor. According to this model, the main process in nanoparticle formation is surface growth through the addition of separate atoms to the nucleation cluster. The nucleus concentrations for various condensation parameters have been determined by comparing experimental and calculated data.  相似文献   

9.
The gas or vapor preconcentrator is an analytical device that significantly improves the detection limit of a microanalytical system by preconcentrating the analyte. The preconcentrator performs front-end sampling and preconcentration of analyte by collecting and concentrating analyte over a period of time. After the analyte-collection phase is complete, a heat pulse releases the analyte as a concentrated wave into the detector. Desirable features of the preconcentrator device include the capability of operating at high flow rates, thermal heating with short-time constants, and selective collection of the analyte(s) of interest. The preconcentrators presented in this review are used as a generic front-end modification to gas-phase microanalytical detection systems, such as gas chromatographs, mass spectrometers, ion-mobility spectrometers, and microelectromechanical system (MEMS)-based chemical sensors. The advantages of the detector in incorporating a preconcentrator device are enhanced sensitivity and improved selectivity. Target analytes concentrated by the preconcentrators described in this review include various organic compounds in gas or vapor phase, such as explosives 2,4,6-trinitrotouluene (TNT) and 1,3,5 trinitro-1,3,5-triazine (RDX), chemical agent dimethyl methylphosphonate (DMMP), a broad range of organic vapors, such as toluene, benzene, ethylene and acetone, and mixtures of these gas-phase organic compounds. We discuss examples of the current trends in microfabricated preconcentrator technology as well as several applications of microfabricated preconcentrators.  相似文献   

10.
Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low-headspace volume chamber, with vapor delivered at low flow rates, allowed for the extraction of new chemical information that significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their concentrations. Each sensor sorbed vapors from the gas stream and, thereby, as in gas chromatography, separated species having high vapor pressures from species having low vapor pressures. Instead of producing only equilibrium-based sensor responses that were representative of the thermodynamic equilibrium partitioning of analyte between each sensor and the initial vapor phase, the sensor responses varied depending on the position of the sensor in the chamber and the time since the beginning of the analyte exposure. The concomitant spatiotemporal (ST) sensor array response therefore provided information that was a function of time, as well as of the position of the sensor in the chamber. The responses to pure analytes and to multicomponent analyte mixtures comprised of hexane, decane, ethyl acetate, chlorobenzene, ethanol, and/or butanol were recorded along each of the sensor arrays. Use of a non-negative least-squares (NNLS) method for analysis of the ST data enabled the correct identification and quantification of the composition of two-, three-, four-, and five-component mixtures from arrays using only four chemically different sorbent films. In contrast, when traditional time- and position-independent sensor response information was used, these same mixtures could not be identified or quantified robustly. The work has also demonstrated that, for ST data, NNLS yielded significantly better results than analyses using extended disjoint principal components modeling. The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST information significantly expands the capabilities of such broadly cross-reactive arrays of sensors.  相似文献   

11.
A computer model has been developed that allows the calculation of the three-dimensional distributions of free atoms and condensed particles inside tube-type electrothermal atomizers. This model is a numerical solution of the three-dimensional diffusion equation written with the appropriate boundary conditions. The proposed model takes the following geometrical and physical factors into account: real tube geometry of an atomizer provided with a dosing hole, analyte vaporization, the size of the region occupied by the sample prior to atomization, three-dimensional analyte diffusion in a non-isothermal furnace environment, and its gas phase (homogeneous) condensation at the cooler parts of the atomizer. The physical processes that take place in electrothermal atomizers are common to all analytes and are the background against which chemical processes take place. Silver was used as the test element for modelling because Ag is a relatively inert element in electrothermal atomization, for which physical processes can be expected to dominate over chemical processes. Imaged representations of the calculated three-dimensional distributions of free Ag atoms and condensed Ag micro-droplets within Perkin-Elmer HGA-type atomizers are given. The imaged representations show that, even for a relatively inert element such as silver, the distribution of atoms in electrothermal atomizers is quite non-homogeneous.  相似文献   

12.
13.
Reported are results for the quantitative determination of absolute transport efficiency in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the Perkin-Elmer HGA-600MS electrothermal vaporizer. The absolute transport efficiencies for Mo, In, Tl and Bi were determined using experimental conditions typical of those applied to real analysis by ETV-ICP-MS. Experiments using an on-line filter trapping apparatus indicated that particles produced by the ETV device were smaller than 0.1 μm in diameter. The nature and condition of the ETV graphite surface, the length of the transfer tube, and the effect that diluted seawater and palladium modifiers have on analyte transport efficiency were investigated. Transport efficiency was comparable for all elements studied and was enhanced with previously used, rather than new, graphite tubes and when seawater and palladium carriers were present. When analyte was vaporized without carrier from a new graphite tube, the transport efficiency to the plasma was approximately 10%. Approximately 70% of the total amount of analyte vaporized was deposited within the ETV switching valve, 19% onto the transfer tubing and 1% onto the components comprising the torch assembly. These conditions represent the `worst case scenario', with analyte transport to the plasma increasing to approximately 20% or more with the addition of carrier.  相似文献   

14.
A model for the simulation of the gradient separation in ion-exchange chromatography is presented. It is based on discontinuous plate model and simulates the distribution of analytes in the ion-exchange column during the separation process. It enables calculations of chromatograms for the analytes with integer and non-integer effective charges under complex gradient profiles. Equilibrium concentrations of all analytes are calculated using the same mathematical equations and expressions regardless of the effective charge on the analyte. The main parameters required for the simulations have to be determined under isocratic elution. The suitability of the model was tested with different types of gradients. A comparison of retention times and chromatograms shows that reliable predictions for all tested gradients are achieved. The observed average of the absolute values of the relative errors of the retention times obtained for any analyte in the present study from the calculated chromatograms is below 4%, while the average error considering all analytes in the study is below 2%.  相似文献   

15.
The effect of gas-phase proton transfer reactions on the mass spectral response of solvents and analytes with known gas-phase proton affinities was evaluated. Methanol, ethanol, propanol and water mixtures were employed to probe the effect of gas-phase proton transfer reactions on the abundance of protonated solvent ions. Ion-molecule reactions were carried out either in an atmospheric pressure electrospray ionization source or in the central quadrupole of a triple-quadrupole mass spectrometer. The introduction of solvent vapor with higher gas-phase proton affinity than the solvent being electrosprayed caused protons to transfer to the gas-phase solvent molecules. In mixed solvents, protonated solvent clusters of the solvent with higher gas-phase proton affinity dominated the resulting mass spectra. The effect of solvent gas-phase proton affinity on analyte response was also investigated, and the analyte response was suppressed or eliminated in solvents with gas-phase proton affinities higher than that of the analyte.  相似文献   

16.
Liquid chromatographic systems with very weak excessive analyte-adsorbent interactions have been studied. These systems consisted of a homologous series of n-alkanes as both analytes and mobile phases with a C18 reversed-phase adsorbent. A linear decrease of the analyte retention volume with an increase of the number of analyte carbon atoms was found. Corresponding increases of analyte retention with an increase in the number of eluent carbon atoms was also discovered. An explanation of these two effects on the basis of adsorption theory is proposed. A good correlation of column hold-up volume calculated by interpolation of the retention dependencies for above mentioned systems with that measured by the minor disturbance method has been shown. A study of the temperature dependencies of these alkane systems has shown entropy-governed retention dependencies.  相似文献   

17.
A previously proposed model for representing the retention factor (k) of an analyte in mixed solvent mobile phases was extended to calculate the k of different analytes with respect to the nature of analyte, organic modifier, its concentration and type of the stationary phase. The accuracy of the proposed method was evaluated by calculating mean percentage deviation (MPD) as accuracy criterion. The predicted vs. observed plots were also provided as goodness of fit criteria. The developed model prediction capability compared with a number of previous models (i.e. LSER, general LSER and Oscik equation) through MPD and fitting plots. The proposed method provided acceptable predictions with the advantage of modeling the effects of organic modifiers, mobile phase compositions, columns and analytes using a single equation. The accuracy of developed model was checked using the one column and one analyte out cross validation analyses and the results showed that the developed model was able to predict the unknown analyte retention and the analytes retentions on unknown column accurately.  相似文献   

18.
A glass capillary ultramicroelectrode (tip diameter approximately 1.2 microm) having an electrokinetic sampling ability is described. It is composed of a pulled glass capillary filled with an inner solution and three internal electrodes (Pt working and counter electrodes and an Ag/AgCl reference electrode). The voltammetric response of the capillary electrode is based on electrokinetic transport of analyte ions from the sample solution into the inner solution across the conical tip. It was found that the electrophoretic migration of analytes at the conical tip is faster than electroosmotic flow, enabling electrokinetic transport of analyte ions into the inner solution of the electrode. By using [Fe(CN)6]4- and (ferrocenylmethyl)trimethylammonium (FcTMA+) ions as model analytes, differential pulse voltammetric responses of the capillary electrode were investigated in terms of tip diameter of the capillary, sampling voltage, sampling time, detection limit and selectivity. The magnitude of the response depends on the size and charge of analyte ions. With a capillary electrode having a approximately 1.2-microm tip diameter, which minimizes non-selective diffusional entry of analytes, the response after 1 h sampling at +1.7 V is linearly related to [Fe(CN)6]4- concentration in the range of 0.50-5.0 mM with the detection limit of 30 microM. Application of a potential of the same sign as that of the analyte ion forces the analyte to move out from the electrode to the solution, enabling reuse of the same capillary electrode. The charge-selective detection of analytes with the capillary electrode is demonstrated for [Fe(CN)6]4- in the presence of FcTMA+.  相似文献   

19.
Ferrey ML  Lovrien RE 《Talanta》1993,40(2):127-134
Adapted bacteria used in heat conduction calorimetry may be developed as 'analytical reagents' for compounds that can be metabolized by such bacteria. Adaption can be done by growing cells such as E. coli on the analyte of interest, for example a sugar. Samples to be analyzed are mixed with adapted cells which aerobically metabolize the sought-for analyte, producing heat. The method is called microbial calorimetric analysis, MCA. Average requirements are 2-200 nanomoles of analyte, "carbon", an excess of cells ca. 2-5 mg of cells, and 1-2 ml of air to maintain aerobicity. Heat production is usually completed in 300-600 sec at 25 degrees. The combination of bacteria and heat conduction calorimetry is a sensor system having a sensitivity and selectivity dependent on bacterial adaption. The system is useful in analytical problems when analytes are in turbid suspension, are poor chromogens or not even prochromogenic. MCA takes advantage of the large aerobic heats usually generated by bacteria in active utilization of organic analytes. Typically from 20 to 70 kcal exothermic heat per mole of carbon atoms is generated, e.g., (-)300 kcal/mole glucose. Heat conduction calorimeters, batch mixing instruments, measure 2-100 millicalorie heat with +/-3% error in each run. Bacteria can be grown on many different kinds of compounds. Accordingly it is fairly easy to create diverse, specific 'analytical reagents' which function in MCA much as they function in their usual environment, in soils, etc. Intact, adapted bacteria have decided advantages over isolated enzymes as 'biosensors' for a number of practical reasons.  相似文献   

20.
A methodology for the evaluation of the performance of an analytical method for incurred samples is presented. Since this methodology is based on intra-laboratory information, it is suitable for analytical fields that lack reference materials with incurred analytes and it can be used to evaluate the analytical steps prior to the analytical portion, which are usually excluded in proficiency tests or at the certification of reference materials. This methodology can be based on tests performed on routine samples allowing the collection of information on the more relevant combinations analyte/matrix; therefore, this approach is particularly useful for analytical fields that involve a high number of analyte/matrix combinations, which are difficult to cover even considering the frequent participation in expensive proficiency tests.This approach is based on the development of a model of the performance of the analytical method based on the differential approach for the quantification of measurement uncertainty and on the comparison of recovery associated with each one of the analytical steps whose performance can vary with the analyte origin, for spiked and incurred samples.This approach was applied to the determination of pesticide residues in apples. For the analytes covered, no evidence was found that the studied sample processing and extraction steps performance for this matrix varies with the analyte origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号