首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the characterization of a source for soft ionization of organic molecules. This source is based on a plasma jet established at the end of a capillary dielectric barrier discharge at atmospheric pressure. He, Ne and Ar as pure gas or with different concentrations of N2 are used as buffer gas for the plasma jet. Spectroscopic emission measurements are carried out along the plasma jet in and outside the capillary. The intensity variation of N2+ lines, for example emission at 391.4 and 427.8 nm, can be associated with the protonation process which is the basis for the soft ionization. The mechanism of the N2+ production outside the capillary, which is relevant for the protonation of molecules and sustains the production of primary ions, is investigated. The response signal of the ions in a nitrogen atmosphere was measured with an ion mobility spectrometer (IMS).  相似文献   

2.
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry and as ionization source for ion mobility spectrometry. It turned out that dielectric barrier discharge ionization could be regarded as a soft ionization technique characterized by only minor fragmentation similar to atmospheric pressure chemical ionization (APCI). Mainly protonated molecules were detected. In order to characterize the soft ionization mechanism spatially resolved optical emission spectrometry (OES) measurements were performed on plasma jets burning either in He or in Ar. Besides to spatial intensity distributions of noble gas spectral lines, in both cases a special attention was paid to lines of N2+ and N2. The obtained mapping of the plasma jet shows very different number density distributions of relevant excited species. In the case of helium plasma jet, strong N2+ lines were observed. In contrast to that, the intensities of N2 lines in Ar were below the present detection limit. The positions of N2+ and N2 distribution maxima in helium indicate the regions where the highest efficiency of the water ionization and the protonation process is expected.  相似文献   

3.
A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3, NO3, NO2, O3 and O2 of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.  相似文献   

4.
When a standard atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization (APPI) ion source is used without applying the corona discharge or photoirradiation, atmospheric pressure thermospray ionization (APTSI) of various compounds can be achieved. Although largely ignored, this phenomenon has recently gained interest as an alternative ionization technique. In this study, this technique is performed for the first time on a miniaturized scale using a microchip nebulizer. Sample ionization with the presented microchip‐APTSI (µAPTSI) is achieved by applying only heat and gas flow to a nebulizer chip, without any other methods to promote gas‐phase ionization. To evaluate the performance of the described µAPTSI setup, ionization efficiency for a set of test compounds was monitored as the microchip positioning, temperature, nebulizer gas flow rate, sample solution composition, and solvent flow rate were varied. The µAPTSI mass spectra of the test compounds were also compared to those obtained with ESI and APCI. The µAPTSI produces ESI‐like spectra with low background noise, favoring the formation of protonated or deprotonated molecules of compounds that are ionizable in solution. Multiple charging of peptides without in‐source fragmentation was also observed. Unlike ESI, however, the µAPTSI source can tolerate the presence of mobile phase additives like trifluoroacetic acid (TFA) without significant ion suppression. The µAPTSI source can be used with standard mass spectrometer ion source hardware, being a unique alternative to the present interfacing techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Most state of the art gas sensor systems based on atmospheric pressure ionization, such ion mobility spectrometers use radioactive beta-sources (e.g. 3H or 63Ni) to provide free electrons with high kinetic energy to initiate a chemical gas phase ionization of the analytes to be detected. Here, we introduce a non-radioactive electron emitter which generates free electrons at atmospheric pressure. Therefore, electrons are generated in a vacuum by field emission and accelerated towards a 300 nm thin 1 mm2 silicon nitride membrane separating the vacuum from atmospheric pressure. Electron currents of about a few hundred microamps can be reached. High energetic electrons of about 10 keV can easily penetrate the membrane without significant loss of kinetic energy. The concept of proximity focusing avoids complex electron lenses to focus the electron beam onto the membrane. The used field emitter tips are made of multi-walled carbon nanotubes. Another benefit of our system is that no insulated power supply operating at high voltage is needed, as necessary for thermo emitters. Here, we show a first prototype of a proximity focused electron gun with field emitting carbon nanotubes. The system is coupled to our drift tube ion mobility spectrometer for validation. Ion mobility spectra similar to those of a 3H ionization source were achieved.  相似文献   

6.
A modified atmospheric pressure chemical ionization ion source is applied for direct analysis of volatile or low volatile organic compounds in air. The method is based on the direct introduction of the analytes in the gas phase and/or particle phase into the ion source of a commercial ion-trap mass spectrometer. Two methods are employed for the production of primary ions at atmospheric pressure, photoionization and corona discharge. It is shown that in the presence of a dopant, photoionization can be a highly efficient ionization method also for real-time analysis with detection limits for selected analytes in the lower ppt-range. Using corona discharge for the production of primary ions, which is instrumentally easier since no additional chemicals have to be added to the sample flow, we demonstrate the analytical potential of on-line atmospheric pressure chemical ionization mass spectrometry for reaction monitoring experiments. To do so, an atmospherically relevant gas phase reaction is carried out in a 500 l reaction chamber and gaseous and particulate compounds are monitored in the positive and negative ion mode of the mass spectrometer.  相似文献   

7.
The major reactant ion in conventional ion mobility spectrometry (IMS) is the hydronium ion, H3O+ which is produced in the usual ionization sources such as corona discharge or radioactive sources. Using the hydronium reactant ion, mostly the analytes with proton affinity higher than that of water are ionized. A broader range of compounds can be detected by IMS if other alternative ionization channels, such as charge transfer from NO+, are employed. In this work we introduce a simple and novel method for producing NO+ as the major reactant ion in IMS. This was achieved by adding neutral NO to the corona discharge ionization source. The neutral NO was prepared via an additional discharge in an air stream, flowing into the corona discharge source. A curtain plate was mounted in front of the corona discharge to prevent the influence of the analyte on the production of NO+. Using this technique, the reactant ion could easily and quickly switch between the H3O+ and NO+. The performance of the new source was evaluated by recording ion mobility spectra of test compounds with both H3O+ and NO+ reactant ions.  相似文献   

8.
A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy‐efficient photoionization source that produce the reactant ions via soft X‐radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X‐radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2 with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2 and Cl (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X‐ray photoionization in different gasses (air, N2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3] and [M + Cl], adduct ions such as [M + N2O2], [M + Br] and [M + I] were detected, and their gas‐phase structures and energetics are investigated by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Super‐atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4–5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H]+ which was not so common in APCI, was also observed with high ion abundance under super‐atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Helium Plasma Ionization (HePI) generates gaseous negative ions upon exposure of vapors emanating from organic nitro compounds. A simple adaptation converts any electrospray ionization source to a HePI source by passing helium through the sample delivery metal capillary held at a negative potential. Compared with the demands of other He‐requiring ambient pressure ionization sources, the consumption of helium by the HePI source is minimal (20–30 ml/min). Quantification experiments conducted by exposing solid deposits to a HePI source revealed that 1 ng of 2,4,6‐trinitrotoluene (TNT) on a filter paper (about 0.01 ng/mm2) could be detected by this method. When vapor emanating from a 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX) sample was subjected to helium plasma ionization mass spectrometry (HePI‐MS), a peak was observed at m/z 268 for (RDX●NO2)?. This facile formation of NO2? adducts was noted without the need of any extra additives as dopants. Quantitative evaluations showed RDX detection by HePI‐MS to be linear over at least three orders of magnitude. TNT samples placed even 5 m away from the source were detected when the sample headspace vapor was swept by a stream of argon or nitrogen and delivered to the helium plasma ion source via a metal tube. Among the tubing materials investigated, stainless steel showed the best performance for sample delivery. A system with a copper tube, and air as the carrier gas, for example, failed to deliver any detectable amount of TNT to the source. In fact, passing over hot copper appears to be a practical way of removing TNT or other nitroaromatics from ambient air. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The DART (direct analysis in real time) ion source is a novel atmospheric pressure ionization technique that enables efficient ionization of gases, liquids and solids with high throughput. A major limit to its wider application in the analysis of gases is its poor detection sensitivity caused by open‐air sampling. In this study, a confined interface between the DART ion source outlet and mass spectrometer sampling orifice was developed, where the plasma generated by the atmospheric pressure glow discharge collides and ionizes gas‐phase molecules in a Tee‐shaped flow tube instead of in open air. It leads to significant increase of collision reaction probability between high energy metastable molecules and analytes. The experimental results show that the ionization efficiency was increased at least by two orders of magnitude. This technique was then applied in the real time analysis of volatile organic compounds (VOCs) of Citrus Limon (lemon) and wounded Allium Cepa (onion). The confined DART ion source was proved to be a powerful tool for the studies of plant metabolomics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
For the ionization of gas mixtures, several ionization sources can be coupled to an ion mobility spectrometer. Radioactive sources, e.g. beta radiators like 63Ni and 3H, are the most commonly used ionization sources. However, due to legal restrictions radioactive ionization sources are not applicable in certain applications. Non-radioactive alternatives are corona discharge ionization sources or photoionization sources. However, using an electron gun allows regulation of ion production rate, ionization time and recombination time by simply changing the operating parameters, which can be utilized to enhance the analytical performance of ion mobility spectrometers. In this work, the impact of an ionization source parameter variation on the ion mobility spectrum is demonstrated. Increasing the ion production rate, the amount of the generated ions increases leading to higher signal intensity while the noise remains constant. Thus, the signal to noise ratio can be increased, leading to better limits of detection. In a next step, the ion production rate is kept constant while the influence of ionization time on the ion mobility spectrum is investigated. It is shown, that varying the ionization time allows the determination of the reaction rate constants as additional information to the ion mobility. Furthermore, we show the prevention of discrimination processes by using short ionization times combined with an increased ion production rate. Thus, the limit of detection for benzene in presence of toluene is improved. Additionally, it is shown that using ion-ion recombination leads to the detection of the ion species with the highest proton affinity at higher recombination times while the low proton affine ions already recombined. Thus, the measurement of the ion mobility spectra at a defined recombination time allows a suppression of disturbing low proton affine substances.  相似文献   

13.
In an effort to better understand the formation of negative reactant ions in air produced by an atmospheric pressure corona discharge source, the neutral vapors generated by the corona were introduced in varying amounts into the ionization region of an ion mobility spectrometer/mass spectrometer containing a 63Ni ionization source. With no discharge gas the predominant ions were O2 , however, upon the introduction of low levels of discharge gas the NO2 ion quickly became the dominant species. As the amount of discharge gas increased the appearance of CO3 was observed followed by the appearance of NO3 . At very high levels, NO3 species became effectively the only ion present and appeared as two peaks in the IMS spectrum, NO3 and the NO3 ·HNO3 adduct, with separate mobilities. Since explosive compounds typically ionize in the presence of negative reactant ions, the ionization of an explosive, RDX, was examined in order to investigate the ionization properties with these three primary ions. It was found that RDX forms a strong adduct with both NO2 and NO3 with reduced mobility values of 1.49 and 1.44 cm2V−1 s−1, respectively. No adduct was observed for RDX with CO3 although this adduct has been observed with a corona discharge mass spectrometer. It is believed that this adduct, although formed, does not have a sufficiently long lifetime (greater than 10 ms) to be observed in an ion mobility spectrometer.  相似文献   

14.
High pressure electrospray ionization mass spectrometry has been performed by pressurizing a custom made ion source chamber with compressed air to a pressure higher than the atmospheric pressure. The ion source was coupled to a commercial time-of-flight mass spectrometer using a nozzle-skimmer arrangement. The onset voltage for the electrospray of aqueous solution was found to be independent on the operating pressure. The onset voltage for the corona discharge, however, increased with the rise of pressure following the Paschen’s law. Thus, besides having more working gas for the desolvation process, gaseous breakdown could also be avoided by pressurizing the ESI ion source with air to an appropriate level. Stable electrospray ionization has been achieved for the sample solution with high surface tension such as pure water in both positive and negative ion modes. Fragmentation of labile compounds during the ionization process could also be reduced by optimizing the operating pressure of the ion source.  相似文献   

15.
Kolomiets YN  Pervukhin VV 《Talanta》2011,85(4):1792-1797
For successful operation of ionization analysis techniques an efficient sampling and sample ion transportation into an analytical path are required. This is of particular importance for atmospheric pressure ionization sources like corona discharge, electrospray, MALDI, ionization with radioactive isotopes (3H, 63Ni) that produce nonuniform spatial distribution of sample ions. The available methods of sample ion focusing with electric fields are either efficient at reduced pressure (to 1 Torr) or feature high sample losses. In this paper we suggest to use a highly whirled gas stream for atmospheric pressure ion focusing. We use a 63Ni radioactive source to produce an ionized bipolar sample at atmospheric pressure. It is shown by experiments that compared to an aspiration method a forced highly whirled vortex stream allows one to enhance the efficiency of remote ionized sample collection at distances equal to the vortex sampler diameter by an order of magnitude. With a vortex stream, a sixfold increase in the efficiency of the radial ionized sample collection has been obtained. It may be deduced that with the vortex stream remote sampling obtains a new feature which is characterized by a considerable enhancement of the efficiency of the ionized sample collection and can be called as a “gas-dynamic” ionized sample focusing. Considered is the effect of recombination losses of the ionized sample during the remote sampling thereof with the vortex sampler. Prospects for a practical implementation of the vortex sampler for solving the problems of the customs control over the smuggling of radioactive α and β sources are made based on the research results.  相似文献   

16.
Normal and cyclic alkanes and alkenes form stable gas-phase ions in air at atmospheric pressure from 40 to 200°C when moisture is below 1 ppm. Ionization of alkanes in a 63Ni source favored charge transfer over proton transfer through pathways involving [M?1]+ and [M?3]+ ions. Ion mobility spectra for alkanes showed sharp and symmetrical profiles while spectra for alkenes suggested fragmentation. Ion identifications were made by using mass spectrometry, and ionization pathways were supported by using deuterated analogs of alkanes and alkenes. Alkanes were ionized seemingly through a hydrogen abstraction pathway and did not proceed through an alkene intermediate. New methods for interpretation of mobility spectra utilizing ion mobility spectrometry, atmospheric pressure chemical ionization mass spectrometry, chemical ionization mass spectrometry, and ion mobility spectrometry-mass spectrometry data were demonstrated.  相似文献   

17.
We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm2. Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.  相似文献   

18.
We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2 or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2 leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.
Figure
?  相似文献   

19.
We have designed and constructed an atmospheric pressure laser desorption/chemical ionization (AP-LD/CI) source that utilizes a laser pulse to desorb intact neutral molecules, followed by chemical ionization via reagent ions produced by a corona discharge. This source employs a heated capillary atmospheric pressure inlet coupled to a quadrupole ion trap mass spectrometer and allows sampling under normal ambient air conditions. Preliminary results demonstrate that this technique provides approximately 150-fold increase in analyte ions compared to the ion population generated by atmospheric pressure infrared matrix-assisted laser desorption/ionization (AP-IR-MALDI).  相似文献   

20.
A paper spray ion source was combined with a drift tube operating at ambient pressure for mobility measurements of ions derived from pharmaceutical solutions. Paper spray ionization with solvent alone resulted in a mixture of ions convolved to a single peak with a reduced mobility of 2.19 cm2/Vs in the mobility spectrum. These were mass-identified principally as m/z 157, (MeOH)2(HCOOH)2H+ and m/z 129, (MeOH)4(H2O)H+ while pharmaceuticals with nitrogen bases formed MH+ product ions. The duration of response was governed by the volume of liquid added to the paper source and was limited by evaporation of solvent in gas at 58 °C venting the drift tube. Quantitative variation was attributed in part to morphologic changes in the tip of the paper spray source. This was associated with mass flow in the electrical discharge and not due alone to cycles of wetting and drying of the paper. Mobility spectra of chlorpromazine in urine, exhibited a single product ion peak and linear response was 30 to 500 ng with an estimated limit of detection of 1.5 ng. Ion flux could be prolonged by continuous addition of liquid and findings portend a combination of paper spray ionization IMS with paper chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号