首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introducing the fermionic R-operator and solutions of the inverse scattering problem for local fermion operators, we derive a multiple integral representation for zero-temperature correlation functions of a one-dimensional interacting spinless fermion model. Correlation functions particularly considered are the one-particle Green's function and the density–density correlation function both for any interaction strength and for arbitrary particle densities. In particular for the free fermion model, our formulae reproduce the known exact results. Form factors of local fermion operators are also calculated for a finite system.  相似文献   

2.
The gauge symmetry group of any slave boson representation allows to gauge away the phase of bosonic fields. One benefit of this radial field formulation is the elimination of spurious Bose condensations when saddle-point approximation is performed. Within the Kotliar–Ruckenstein representation, three of the four bosonic fields can be radial while the last one has to remain complex. In this work, the procedure to carry out the functional integration involving constrained fermionic fields, complex bosonic fields, and radial bosonic fields is presented. The correctness of the representation is verified by exactly evaluating the partition function and the Green's function of the Hubbard model in the atomic limit.  相似文献   

3.
Abstract

Traditionally, in moment-method analyses of electromagnetic scattering, the elements of the impedance matrix are calculated as convolutions of the basis elements with the appropriate dyadic Green's function. However, for scattering in the half-space, the vertical and azimuthal copolar terms of the Green's function require evaluation of Sommerfeld integrals which are computationally burdensome. In this paper, it is shown that, in populating the impedance matrix for the half-space problem, evaluation of Sommerfeld integrals is, in fact, not necessary. For monochromatic excitation, the plane-wave expansion of the scattered field constitutes a Fourier transform, in the horizontal plane, of a vector spectral function. This vector function results from the convolution, in the vertical dimension, of the respective angular spectra of the Green's function and the equivalent current. On application of the moment method, through the Weyl identity, the impedance-matrix elements corresponding to the singular terms of the Green's function are convolutions in the horizontal plane of spherical potentials, and Fourier transforms of scalar spectral functions. These scalar functions are derived from the basis elements and, with a judicious choice of basis, they are well behaved and of compact support, and consequently their Fourier transforms can be computed as FFTs.  相似文献   

4.
In this work we calculate the exact Green's function for arbitrary rectangular potentials. Specifically we focus on Green's function for rectangular quantum wells enlarging the knowledge of exact solutions for Green's functions and also generalizing and resuming results in the literature. The exact formula has the form of a sum over paths and always can be cast into a closed analytic expression. From the poles and residues of the Green's function the bound states eigenenergies and eigenfunctions with the correct normalization constant are obtained. In order to show the versatility of the method, an application of the Green's function approach to extract information of quasi-bound states in rectangular barriers, where the standard analysis of quantum amplitudes fail, is presented.  相似文献   

5.
We review the quantum mechanical derivation of the random phase approximation (RPA) for solid state plasmas, starting from the Hamilton equations for canonically paired “second quantized” creation and annhilation field operators of interacting quantum many‐body systems. Discussing variational differentiation, the coupled equations of motion for the quantum field operators are derived. The concept of Green's functions is reviewed and interpreted, first for retarded Green's functions, and their equations of motion are developed from the equations of motion for the field operators. Thermodynamic Green's functions are discussed, and their periodicity/antiperiodicity properties in imaginary time are carefully examined with discussion of Matsubara Fourier series and representation in terms of a spectral weight function. The analytic continuation from imaginary time to real time is treated. Finally, we define nonequilibrium Green's functions and discuss the linearized timedependent Hartree approximation leading to the random phase approximation. An interesting application to the case of Graphene in a perpendicular magnetic field is discussed in detail, along with applications to normal systems, in terms of attendant phenomenology involving electron‐hole pair excitations and plasmons (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
An exact solution for the tensor Green's function of a harmonic field for a semi-infinite elastic medium is presented in an easy-to-use form in the theory of wave scattering. The solution is derived in the form of a sum of the Green's functions for an infinite medium and the term satisfying the homogeneous wave equation for a semi-infinite elastic medium. The results reproduce the known far-field asymptotics containing longitudinal, transversal and surface Rayleigh-type wave modes. The near-field asymptotic is essentially different for the regions far and near the boundary.  相似文献   

7.
ABSTRACT

A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm?1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.  相似文献   

8.
In this paper a new proof of an identity of Giacomin, Olla, and Spohn is given. The identity relates the 2 point correlation function of a Euclidean field theory to the expectation of the Green's function for a pde with random coefficients. The Euclidean field theory is assumed to have convex potential. An inequality of Brascamp and Lieb therefore implies Gaussian bounds on the Fourier transform of the 2 point correlation function. By an application of results from random pde, the previously mentioned identity implies pointwise Gaussian bounds on the 2 point correlation function.  相似文献   

9.
《Annals of Physics》1987,174(2):442-462
The photon sector of quantum electrodynamics (QED) in two spatial dimensions is analyzed at high temperature to all orders of perturbation theory. Imaginary-time formalism is used. The photon self-energy and propagator at finite temperature with vanishing frequency is calculated to the second order of perturbation theory. Based upon the latter, an improved perturbation theory which incorporates Debye screening is formulated. By virtue of the latter and gauge invariance, infrared finitness holds. The temperature dependence of any contribution to the connected Green's functions in the improved perturbation theory is analyzed systematically. At very high temperature, the photon sector becomes equivalent to a very massive scalar boson field plus a massless electromagnetic field and both become decoupled: all connected Green's functions containing, at least, one closed fermion loop with four or more vertices are shown to tend to zero.  相似文献   

10.
The stationary behavior of type II superconductors is completely described by Gorkov's equations for a set of four Green's functions, supplemented by two self-consistency equations for gap parameterΔ(r) and vector potentialA(r). Expanding all quantities as usual at the Fermi surface and averaging over impurity positions, this set of equations is transformed into a simpler set for integrated Green's functions (which still contain much more information than is needed in most cases). The resulting equations, when linearized, yield essentially Lüders' transport equation for de Gennes' correlation function. The full equations contain all the known results and provide a promising starting point for numerical calculations. The thermodynamic potential is constructed as a functional of the integrated Green's functions and the mean fieldsΔ andA and a variational principle is formulated which uses this functional. Finally, paramagnetic scatterers are included (in Born approximation) as an example for possible generalizations of the new equations.  相似文献   

11.
This paper provides a method for obtaining the harmonic Green's function for flexural waves in semi-infinite plates with arbitrary boundary conditions and a high frequency approximation of the Green's function in the case of convex polygonal plates, by using a generalised image source method. The classical image source method consists in describing the response of a point-driven polygonal plate as a superposition of contributions from the original source and virtual sources located outside of the plate, which represent successive reflections on the boundaries. The proposed approach extends the image source method to plates including boundaries that induce coupling between propagating and evanescent components of the field and on which reflection depends on the angle of incidence. This is achieved by writing the original source as a Fourier transform representing a continuous sum of propagating and evanescent plane waves incident on the boundaries. Thus, the image source contributions arise as continuous sums of reflected plane waves. For semi-infinite plates, the exact Green's function is obtained for an arbitrary set of boundary conditions. For polygonal plates, a high-frequency approximation of the Green's function is obtained by neglecting evanescent waves for the second and subsequent reflections on the edges. The method is compared to exact and finite element solutions and evaluated in terms of its frequency range of applicability.  相似文献   

12.
The zero term of the quasiclassical asymptotic (?→ 0) of the Klein-Gordon-Fock equation as symmetrized by Feynman (V. V. Belov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 45 (1975)), giving the exact Green's function of the Cauchy problem in arbitrary (nonparallel) steady homogeneous electric and magnetic fields, is constructed. The exact Green's function for the Dirae equation in an arbitrary, steady electromagnetic field and for the Pauli equation (semirelativistic Schrödinger equation) in the nonsteady-state case is constructed in an analogous manner.  相似文献   

13.
The Hadamard constituents of Green's functions for a ζ-parametrized generalization of the massless scalar d'Alembert equation to a curved space-time including the conformally invariant wave equation: the world function of space-time, the transport scalar, and the tail-term coefficients, being simultaneously coefficients in the Schwinger-DeWitt expansion of the Feynman propagator for the corresponding invariant Klein-Gordon equation, are considered on a general static spherically symmetric and (2,2)-decomposable metric. The construction equations determining the Hadamard building elements are cast into a symmetry-adapted form and used to obtain, on a specific model metric, exact explicit solutions.  相似文献   

14.
The quantum mechanical Coulomb problem in two and three dimensions is solved completely in terms of path integrals. We derive the integral representations for the Green's functions in configuration space and recover the wave functions from factorized residues.  相似文献   

15.
An effective QCD Hamiltonian is constructed with the aid of the background perturbation theory and relativistic Feynman-Schwinger path integrals for Green's functions. The resulting spectrum displays mass gaps of about 1 GeV when an additional valence gluon is added to the bound state. The mixing of meson, hybrid, and glueball states is defined in two ways—through generalized Green's functions and through a modified Feynman diagram technique—giving similar answers. Results for mixing matrix elements are numerically not large (around 0.1 GeV) and agree with earlier analytic estimates and lattice simulations.  相似文献   

16.
Variations of the spectral lines in high dense ion plasmas with temperature and pressure may be characterized by the broadening as well as by the shift of spectral lines. For dense hydrogen- and alkali-plasmas (free carrier density larger than 1016/cm3) one of the possible mechanisms responsible for line profiles is considered to be the Coulomb interaction with free charged carriers. Using thermodynamic Green's functions, a systematic approach to the theory of spectral lines starting from the complex dielectric function is outlined. The line shift is derived from a perturbative treatment of the two-particle Green's function in the surrounding plasma. The shift of several lines proportional to the carrier density is evaluated as a function of the temperature and compared with experimental results.  相似文献   

17.
A Green's function formalism is used to calculate the spectrum of excitations of two neighboring impurities implanted in a semi-infinite ferromagnetic. The equations of motion for the Green's functions are determined in the framework of the Ising model in a transverse field and results are given for the effect of the exchange coupling, position and orientation of the impurities on the spectra of localized spin wave modes.  相似文献   

18.
A theory for the magnetization of ferromagnetic films is formulated within the framework of many‐body Green's function theory which considers all components of the magnetization. The model Hamiltonian includes a Heisenberg term, an external magnetic field, a second‐ and fourth‐order uniaxial single‐ion anisotropy, and the magnetic dipole‐dipole coupling. The single‐ion anisotropy terms can be treated exactlyby introducing higher‐order Green's functions and subsequently taking advantage of relations between products of spin operators which leads to an automatic closure of the hierarchy of the equations of motion for the Green's functions with respect to the anisotropy terms. This is an improvement on the method of our previous work, which treated the corresponding terms only approximately by decoupling them at the level of the lowest‐order Green's functions. RPA‐like approximations are used to decouple the exchange interaction terms in both the low‐order and higher‐order Green's functions. As a first numerical example we apply the theory to a monolayer for spin S = 1 in order to demonstrate the superiority of the present treatment of the anisotropy terms over the previous approximate decouplings.  相似文献   

19.
The single particle (SP) energies of 41Ca and the single hole energies of 39Ca are calculated with eigenvalue equation derived from SP Green's function.The matrix element of M-3Y force is adopted as the equivalent of G-matrix element.Two particle one hole (2plh) and two hole one particle (2hlp) multiple scattering (MS) correlation were studied.The results show the 2hlp MS correlation is more important than the 2plh MS correlation.  相似文献   

20.
Special symmetries of the Green's functions of a non-relativistic many fermion-system and conservation laws, expressible by hermitian generators, are formulated as relations for a Green's function operator. Approximations for the Green's functions, defined as partial summations of the perturbation expansion, and consistent with the symmetries and conservation laws are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号