首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loud (195 dB re 1 microPa at 1 m) 75-Hz signals were broadcast with an ATOC projector to measure ocean temperature. Respiratory and movement behaviors of humpback whales off North Kauai, Hawaii, were examined for potential changes in response to these transmissions and to vessels. Few vessel effects were observed, but there were fewer vessels operating during this study than in previous years. No overt responses to ATOC were observed for received levels of 98-109 dB re 1 microPa. An analysis of covariance, using the no-sound behavioral rate as a covariate to control for interpod variation, found that the distance and time between successive surfacings of humpbacks increased slightly with an increase in estimated received ATOC sound level. These responses are very similar to those observed in response to scaled-amplitude playbacks of ATOC signals [Frankel and Clark, Can. J. Zool. 76, 521-535 (1998)]. These similar results were obtained with different sound projectors, in different years and locations, and at different ranges creating a different sound field. The repeatability of the findings for these two different studies indicates that these effects, while small, are robust. This suggests that at least for the ATOC signal, the received sound level is a good predictor of response.  相似文献   

2.
The off-axis sonar beam patterns of eight free-ranging finless porpoises were measured using attached data logger systems. The transmitted sound pressure level at each beam angle was calculated from the animal's body angle, the water surface echo level, and the swimming depth. The beam pattern of the off-axis signals between 45 degrees and 115 degrees (where 0 degrees corresponds to the on-axis direction) was nearly constant. The sound pressure level of the off-axis signals reached 162 dB re 1 microPa peak-to-peak. The surface echo level received at the animal was over 140 dB, much higher than the auditory threshold level of small odontocetes. Finless porpoises are estimated to be able to receive the surface echoes of off-axis signals even at 50-m depth. Shallow water systems (less than 50-m depth) are the dominant habitat of both oceanic and freshwater populations of this species. Surface echoes may provide porpoises not only with diving depth information but also with information about surface direction and location of obstacles (including prey items) outside the on-axis sector of the sonar beam.  相似文献   

3.
The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.  相似文献   

4.
5.
Male bullfrogs will vocalize in response to playbacks of the mating (advertisement) calls of conspecifics. This behavior was studied in response to playbacks of bullfrog mating calls presented at six different sound intensity levels. The lowest sound intensity level tested (50 dB SPL) was insufficient to evoke calling from any of the animals. Calling was evoked by playback levels of 60 dB SPL and higher. The data suggest that behavioral evoked calling thresholds lie between 50-60 dB SPL for these animals. Playback intensity levels of 80 dB SPL were more effective in evoking responses than were intensity levels up to 20 dB higher or lower. This was true both in terms of the total number of evoked responses and the trial number at which responding ceased. Moreover, significantly less habituation of evoked calling occurred at levels of 80 dB SPL than at higher or lower levels. The data suggest that a sound pressure level of 80 dB represents a behaviorally preferred intensity level for evoked calling in the bullfrog. Field recordings of bullfrog choruses show that the intensity produced by an individual calling male reaches a level of 80 dB SPL at a distance of 1 m. This intensity level is identical to that producing maximal evoked calling in the laboratory.  相似文献   

6.
A behavioral response paradigm was used to measure hearing thresholds in bottlenose dolphins before and after exposure to 3 kHz tones with sound exposure levels (SELs) from 100 to 203 dB re 1 microPa2 s. Experiments were conducted in a relatively quiet pool with ambient noise levels below 55 dB re 1 microPa2/Hz at frequencies above 1 kHz. Experiments 1 and 2 featured 1-s exposures with hearing tested at 4.5 and 3 kHz, respectively. Experiment 3 featured 2-, 4-, and 8-s exposures with hearing tested at 4.5 kHz. For experiment 2, there were no significant differences between control and exposure sessions. For experiments 1 and 3, exposures with SEL=197 dB re 1 microPa2 s and SEL > or = 195 dB re 1 microPa2 s, respectively, resulted in significantly higher TTS4 than control sessions. For experiment 3 at SEL= 195 dB re 1 microPa2 s, the mean TTS4 was 2.8 dB. These data are consistent with prior studies of TTS in dolphins exposed to pure tones and octave band noise and suggest that a SEL of 195 dB re 1 microPa2 s is a reasonable threshold for the onset of TTS in dolphins and white whales exposed to midfrequency tones.  相似文献   

7.
Measurements are reported of the intensity of the siamang gibbon loud call obtained from the vocal bouts of three family groups at Twycross Zoo, UK. Across 25 samples the maximum intensity ranged from 95 to 113 dB SPL (linear frequency-weighting and fast time-weighting) and exhibited three frequency modes of 250-315 Hz, 630-800 Hz and 1.2-1.6 kHz. The lowest frequency mode, which may correspond to the "boom" sound produced by resonance of the siamang inflated vocal sac, had a mean maximum intensity of 99 dB SPL. These values, which are in excess of the saccular acoustic threshold of about 90 dB at 300 Hz for air conducted sound, suggest that primate loud calls recruit a primitive mode of acoustic sensitivity furnished by the sacculus. Thus reproductive vocal behavior of primates may be influenced by a primitive acoustical reward pathway inherited from a common ancestor with anamniotes. In humans such a pathway could explain the compulsion for exposure to loud music.  相似文献   

8.
The use of ultrasonic sounds in alarms for gillnets may be advantageous, but the deterring effects of ultrasound on porpoises are not well understood. Therefore a harbor porpoise in a large floating pen was subjected to a continuous 50 kHz pure tone with a source level of 122+/-3 dB (re 1 microPa, rms). When the test signal was switched on during test periods, the animal moved away from the sound source. Its respiration rate was similar to that during baseline periods, when the sound was switched off. The behavior of the porpoise was related to the sound pressure level distribution in the pen. The sound level at the animal's average swimming location during the test periods was approximately 107+/-3 dB (re 1 microPa, rms). The avoidance threshold sound pressure level for a continuous 50 kHz pure tone for this porpoise, in the context of this study, is estimated to be 108+/-3 dB (re 1 microPa, rms). This study demonstrates that porpoises may be deterred from an area by high frequency sounds that are not typically audible to fish and pinnipeds and would be less likely masked by ambient noise.  相似文献   

9.
Little is known about feeding behavior of wild dugongs (Dugong dugon) because direct measurements of feeding events in the water were scarcely feasible. In this study, the authors achieved the first successful feeding sound monitoring in a seagrass area using a full-band underwater recording system (called automatic underwater sound monitoring system for dugong: AUSOMS-D). In total, 175 feeding sounds were identified in 205 h of recording. Feeding sounds were only detected at night, implying diurnal differences in the feeding behavior of the studied dugong population. Differences in periodicity of feeding sounds suggested that two or more individuals were in the acoustically observable area. Furthermore, a feeding position monitored by two AUSOMS-Ds was used to calculate source levels of dugong feeding sounds. Assuming spherical_propagation, source levels were measured between 70.6 and 79.0 dB rms re 1 microPa/square root of Hz.  相似文献   

10.
Vocal characteristics of pygmy blue whales of the eastern Indian Ocean population were analyzed using data from a hydroacoustic station deployed off Cape Leeuwin in Western Australia as part of the Comprehensive Nuclear-Test-Ban Treaty monitoring network, from two acoustic observatories of the Australian Integrated Marine Observing System, and from individual sea noise loggers deployed in the Perth Canyon. These data have been collected from 2002 to 2010, inclusively. It is shown that the themes of pygmy blue whale songs consist of ether three or two repeating tonal sounds with harmonics. The most intense sound of the tonal theme was estimated to correspond to a source level of 179 ± 2 dB re 1 μPa at 1 m measured for 120 calls from seven different animals. Short-duration calls of impulsive downswept sound from pygmy blue whales were weaker with the source level estimated to vary between 168 to 176 dB. A gradual decrease in the call frequency with a mean rate estimated to be 0.35 ± 0.3 Hz/year was observed over nine years in the frequency of the third harmonic of tonal sound 2 in the whale song theme, which corresponds to a negative trend of about 0.12 Hz/year in the call fundamental frequency.  相似文献   

11.
Conspicuous sonic click sounds were recorded in the presence of cod (Gadus morhua), together with either harp seals (Pagophilus groenlandicus), hooded seals (Cystophora cristata) or a human diver in a pool. Similar sounds were never recorded in the presence of salmon (Salmo salar) together with either seal species, or from either seal or fish species when kept separately in the pool. It is concluded that cod was the source of these sounds and that the clicks were produced only when cod were approached by a swimming predatorlike body. The analyzed click sounds (n = 377) had the following characteristics (overall averages +/- S.D.): peak frequency = 5.95 +/- 2.22 kHz; peak-to-peak duration = 0.70 +/- 0.45 ms; sound pressure level (received level) = 153.2 +/- 7.0 dB re 1 microPa at 1 m. At present the mechanism and purpose of these clicks is not known. However, the circumstances under which they were recorded and some observations on the behavior of the seals both suggest that the clicks could have a predator startling function.  相似文献   

12.
Some bioacousticians have used a single hydrophone to calculate the depth/range of phonating diving animals. The standard one-hydrophone localization method uses multipath transmissions (direct path, sea surface, and seafloor reflections) of the animal phonations as a substitute for a vertical hydrophone array. The standard method requires three multipath transmissions per phonation. Bioacousticians who study foraging sperm whales usually do not have the required amount of multipath transmissions. However, they usually detect accurately (using shallow hydrophones towed by research vessels) direct path transmissions and sea surface reflections of sperm whale phonations (clicks). Sperm whales emit a few thousand clicks per foraging dive, therefore researchers have this number of direct path transmissions and this number of sea surface reflections per dive. The author describes a Bayesian method to combine the information contained in those acoustic data plus visual observations. The author's tests using synthetic data show that the accurate estimation of the depth/range of sperm whales is possible using a single hydrophone and without using any seafloor reflections. This method could be used to study the behavior of sperm whales using a single hydrophone in any location no matter what the depth, the relief, or the constitution of the seafloor might be.  相似文献   

13.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in five bottlenose dolphins and two white whales before and immediately after exposure to intense 1-s tones at 0.4, 3, 10, 20, and 75 kHz. The resulting levels of fatiguing stimuli necessary to induce 6 dB or larger masked temporary threshold shifts (MTTSs) were generally between 192 and 201 dB re: 1 microPa. The exceptions occurred at 75 kHz, where one dolphin exhibited an MTTS after exposure at 182 dB re: 1 microPa and the other dolphin did not show any shift after exposure to maximum levels of 193 dB re: 1 microPa, and at 0.4 kHz, where no subjects exhibited shifts at levels up to 193 dB re: 1 microPa. The shifts occurred most often at frequencies above the fatiguing stimulus. Dolphins began to exhibit altered behavior at levels of 178-193 dB re: 1 microPa and above; white whales displayed altered behavior at 180-196 dB re: 1 microPa and above. At the conclusion of the study all thresholds were at baseline values. These data confirm that cetaceans are susceptible to temporary threshold shifts (TTS) and that small levels of TTS may be fully recovered.  相似文献   

14.
Toneburst-evoked auditory brainstem responses (ABRs) were recorded in a captive subadult male leopard seal. Three frequencies from 1 to 4 kHz were tested at sound levels from 68 to 122 dB peak equivalent sound pressure level (peSPL). Results illustrate brainstem activity within the 1-4 kHz range, with better hearing sensitivity at 4 kHz. As is seen in human ABR, only wave V is reliably identified at the lower stimulus intensities. Wave V is present down to levels of 82 dB peSPL in the right ear and 92 dB peSPL in the left ear at 4 kHz. Further investigations testing a wider frequency range on seals of various sex and age classes are required to conclusively report on the hearing range and sensitivity in this species.  相似文献   

15.
Structure-borne noise originating from a heat pump unit was selected to study the influence on subjective annoyance of low frequency noise (LFN) combined with additional sound. Paired comparison test was used for evaluating the subjective annoyance of LFN combined with different sound pressure levels (SPL) of pink noise, frequency-modulated pure tones (FM pure tones) and natural sounds. The results showed that, with pink noise of 250-1000 Hz combined with the original LFN, the subjective annoyance value (SAV) first dropped then rose with increasing SPL. When SPL of the pink noise was 15-25 dB, SAV was lower than that of the original LFN. With pink noise of frequency 250-20,000 Hz added to LFN, SAV increased linearly with increasing SPL. SAV and the psychoacoustic annoyance value (PAV) obtained by semi-theoretical formulas were well correlated. The determination coefficient (R2) was 0.966 and 0.881, respectively, when the frequency range of the pink noise was 250-1000 and 250-20,000 Hz. When FM pure tones with central frequencies of 500, 2000 and 8000 Hz, or natural sounds (including the sound of singing birds, flowing water, wind or ticking clock) were, respectively, added to the original sound, the SAV increased as the SPL of the added sound increased. However, when a FM pure tone of 15 dB with a central frequency of 2000 Hz and a modulation frequency of 10 Hz was added, the SAV was lower than that of the original LFN. With SPL and central frequency held invariable, the SAV declined primarily when modulation frequency increased. With SPL and modulation frequency held invariable, the SAV became lowest when the central frequency was 2000 Hz. This showed a preferable correlation between SAV and fluctuation extent of FM pure tones.  相似文献   

16.
The intensity jnd is often assumed to depend on the slope of the loudness function. One way to test this assumption is to measure the jnd for a sound that falls on distinctly different loudness functions. Two such functions were generated by presenting a 1000-Hz tone in narrow-band noise (925-1080 Hz) set at 70 dB SPL and in wideband noise (75-9600 Hz) set at 80 dB SPL. Over a range from near threshold to about 75 dB SPL, the loudness function for the tone is much steeper in the narrow-band noise than in the wideband noise. At 72 dB SPL, where the two loudness curves cross, the tone's jnd was measured in each noise by a block up-down two-interval forced-choice procedure. Despite the differences in slope (and in sensation level), the jnd (delta I/I) is nearly the same in the two noises, 0.22 in narrow-band noise and 0.20 in wideband noise. The mean value of 0.21 is close to the value of 0.25 interpolated from Jesteadt et al. [J. Acoust. Soc. Am. 61, 169-176 (1977)] for a 1000-Hz tone that had the same loudness in quiet as did our 72-dB tone in noise, but lay on a loudness function with a much lower slope. These and other data demonstrate that intensity discrimination for pure tones is unrelated to the slope of the loudness function.  相似文献   

17.
This study investigated effects of a previous sound presentation at the absolute threshold of hearing. Changes in threshold were measured when a pure tone at 60 dB SPL preceded a test tone in the contra- or ipsilateral ear. When the previous and test sounds both had the same frequency of 500 Hz, threshold decreased approximately 2 dB in the contralateral ear, and increased slightly in the ipsilateral ear. On the other hand, when the frequency of the previous sound differed from that of the test sound, the threshold was decreased slightly in the ipsilateral ear.  相似文献   

18.
In this report we present the first behavioral measurements of auditory sensitivity for Pollimyrus adspersus. Pollimyrus is an electric fish (Mormyridae) that uses both electric and acoustic signals for communication. Tone detection was assessed from the fish's electric organ discharge rate. Suprathreshold tones usually evoked an accelerated rate in naive animals. This response (rate modulation > or =25%) was maintained in a classical conditioning paradigm by presenting a weak electric current near the offset of 3.5-s tone bursts. An adaptive staircase procedure was used to find detection thresholds at frequencies between 100 and 1700 Hz. The mean audiogram from six individuals revealed high sensitivity in the 200-900 Hz range, with the best thresholds near 500 Hz (66.5+/-4.2 SE dB re: 1 microPa). Sensitivity declined slowly (about 20 dB/octave) above and below this sensitivity maximum. Sensitivity fell off rapidly above 1 kHz (about 60 dB/octave) and no responses were observed at 5 kHz. This behavioral sensitivity matched closely the spectral content of the sounds that this species produced during courtship. Experiments with click trains showed that sensitivity (about 83-dB peak) was independent of inter-click-interval, within the 10-100 ms range.  相似文献   

19.
In this article the results are reported of a study to measure the intensity of the vocal displays of a population of American alligators (Alligator mississippiensis). It was found that the dominant frequencies in air range between 20 and 250 Hz with a source sound pressure level (SPL) of 91-94 dB at 1 m. The active space for the air-borne component is defined by the background and was estimated to be in a range up to 159 m in the 125-200 Hz band. For the water-borne component the dominant frequency range was 20-100 Hz with a source SPL of 121-125 dB at 1 m. The active space in water is defined by hearing thresholds and was estimated to range up to 1.5 km in the 63-100 Hz band. In the lowest frequency bands, i.e., 16-50 Hz, the estimated active space for otolith detection of near-field particle motion in water ranged to 80 m, which compared significantly with far-field detection for these frequencies. It is suggested that alligator vocal communication may involve two distinct sensory mechanisms which may subserve the functions of scene analysis and reproduction, respectively.  相似文献   

20.
High-frequency spectral notches are important cues for sound localization. Our ability to detect them must depend on their representation as auditory nerve (AN) rate profiles. Because of the low threshold and the narrow dynamic range of most AN fibers, these rate profiles deteriorate at high levels. The system may compensate by using onset rate profiles whose dynamic range is wider, or by using low-spontaneous-rate fibers, whose threshold is higher. To test these hypotheses, the threshold notch depth necessary to discriminate between a flat spectrum broadband noise and a similar noise with a spectral notch centered at 8 kHz was measured at levels from 32 to 100 dB SPL. The importance of the onset rate-profile representation of the notch was estimated by varying the stimulus duration and its rise time. For a large proportion of listeners, threshold notch depth varied nonmonotonically with level, increasing for levels up to 70-80 dB SPL and decreasing thereafter. The nonmonotonic aspect of the function was independent of notch bandwidth and stimulus duration. Thresholds were independent of stimulus rise time but increased for the shorter noise bursts. Results are discussed in terms of the ability of the AN to convey spectral notch information at different levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号