首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Tetraaza Macrocylic Ligand (H2L) and its complexes, [Cd(H2L)(OH2)2](NO3)(2)·1/2OH2 (I), [Co(H2L)(OH2)](NO3)(2)·1/2OH2 (II), [Cu(H2L)(NO3)2]·3/2OH2 (III) and [Ni(H2L)(NO3)(OH2)]NO3·OH2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH2)2] (V), [CoL(OH2)2] (VI), [CuL(OH2)2] (VII) and [Ni(H2L)(NO3)2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H2L and its copper complex (III) can bind to DNA through an intercalative mode. The H2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml.  相似文献   

2.
This report covers initial studies in the coaggregation of nickel (Ni2+) and lanthanide (Ln3+) metal ions to form complexes with interesting structural and magnetic properties. The tripodal amine phenol ligand H3tam (1,1,1-tris(((2-hydroxybenzyl)amino)methyl)ethane) is shown to be particularly accommodating with respect to the geometric constraints of both transition and lanthanide metal ions, forming isolable complexes with both of these ion types. In the solid-state structure of [Ni(H2tam)(CH3CN)]PF6.2.5CH3CN.0.5CH3OH (1), the Ni(II) center has a distorted octahedral geometry, with an N3O2 donor set from the [H2tam]- ligand and a coordinated solvent (acetonitrile) occupying the sixth site. The reaction of stoichiometric amounts of H3tam with the Ni(II) ion in the presence of lanthanide(III) ions provides [LnNi2(tam)2]+ cationic complexes which contain coaggregated metal ions. These complexes are isolable and have been characterized by a variety of analytical techniques, with mass spectrometry proving to be particularly diagnostic. The solid-state structures of [LaNi2(tam)2(CH3OH)1/2(CH3CH2OH)1/2(H2O)]ClO4.0.5CH3OH.0.5CH3CH2OH.4H2O (2), [DyNi2(tam)2(CH3OH)(H2O)]ClO4.CH3OH. H2O(6), and [YbNi2(tam)2(H2O)]ClO4.2.58H2O(9) have been determined. Each complex contains two octahedral Ni(II) ions, each of which is encapsulated by the ligand tam3- in an N3O3 coordination sphere; each [Ni(tam)]-unit caps the lanthanide(III) ion via bridging phenoxy oxygen donor atoms. In 2, La3+ is eight-coordinated, while in 6, Dy(III) is seven- (to "weakly eight-") coordinated, and Yb(III) in 9 has a six-coordination environment. The complexes are symmetrically different, 2 possessing C2 symmetry and 6 and 9 having C1 symmetry. Magnetic studies of 2, 6, and 9 indicate that antiferromagnetic exchange coupling between the Ni(II) and Ln(III) ions increases with decreasing ionic radius of Ln(III).  相似文献   

3.
采用表面改性和离子交换相结合的方法制备了Ni2(OCH3)2/SiO2负载型双核金属甲氧基配合物催化剂,利用红外光谱(IR)、程序升温脱附(TPD)、程序升温表面反应(TPSR)和微反技术考察了催化剂的表面结构以及CO2和CH3OH的化学吸附和反应性能.结果表明:Ni2(OCH3)2/SiO2中Ni2+与载体SiO2表面O2-以双齿配位形式键合,甲氧基以桥基形式联结双金属离子形成双核物种Ni2(OCH3)2;CO2在催化剂表面存在甲氧碳酸酯基物种和桥式两种吸附态,CH3OH则只有一种分子吸附态;在100~200℃条件下,CO2和CH3OH在催化剂上的反应产物主要是DMC和H2O;根据反应结果,讨论了催化反应机理.  相似文献   

4.
用水杨酸和吡啶与Ni(ClO4)26H2O 合成了一个新颖配位聚合物[Ni(Hsal)2(Py)2]n。对配合物进行了X射线衍射结构表征, C24H20N2NiO6, Mr = 491.13, 晶体属三斜晶系, P 空间群, 晶胞参数: a = 7.372(2), b =10.852(2), c = 14.728(3) ? a = 108.36(3), b = 93.83(3), g = 103.67(3), V = 1073.7(4) ?。F(000) = 508, m = 0.949mm-1, Z = 2, Dc = 1.519 g/cm3。最后修正到R = 0.0390, wR = 0.0772。配合物中Ni为五配位, 呈四方锥构型。配合物中2个水杨酸根的配位方式不一样, 其中一个水杨酸根作为双齿桥连配体, 使配合物呈一维链状结构。水杨酸苯环的-堆积作用和分子间的氢键作用, 又使配合物呈二维网络结构。  相似文献   

5.
Methane activation by transition metal species has been extensively investigated over the past few decades. It is observed that ground-state monocations of bare 3d transition metals are inert toward CH4 at room temperature because of unfavorable thermodynamics. In contrast, many mono-ligated 3d transition metal cations, such as MO+ (M = Mn, Fe, Co, Cu, Zn), MH+ (M = Fe, Co), and NiX+ (X = H, CH3, F), as well as several bis-ligated 3d transition metal cations including OCrO+, Ni(H)(OH)+, and Fe(O)(OH)+ activate the C―H bond of methane under thermal collision conditions because of the pronounced ligand effects. In most of the above-mentioned examples, the 3d metal atoms are observed to cooperate with the attached ligands to activate the C―H bond. Compared to the extensive studies on active species comprising of middle and late 3d transition metals, the knowledge about the reactivity of early 3d transition metal species toward methane and the related C―H activation mechanisms are still very limited. Only two early 3d transition metal species HMO+ (M = Ti and V) are discovered so far to activate the C―H bond of methane via participation of their metal atoms. In this study, by performing mass spectrometric experiments and density functional theory calculations, we have identified that the diatomic vanadium boride cation (VB+) can activate methane to produce a dihydrogen molecule and carbon-boron species under thermal collision conditions. The strong electrostatic interaction makes the reaction preferentially proceed the V side. To generate experimentally observed product ions, a two-state reactivity scenario involving spin conversion from high-spin sextet to low-spin quartet is necessary at the entrance of the reaction. This result is consistent with the reported reactions of 3d transition metal species with CH4, in which the C―H bond cleavage generally occurs in the low-spin states, even if the ground states of the related active species are in the high-spin states. For VB+ + CH4, the insertion of the synergetic V―B unit (rather than a single V or B atom) into the H3C―H bond causes the initial C―H bond activation driven by the strong bond strengths of V―CH3 and B―H. The mechanisms of methane activation by VB+ discussed in this study may provide useful guidance to the future studies on methane activation by early transition metal systems.  相似文献   

6.
TpRu(PMe3)2(OH) (1) reacts with C6D6 to initiate H/D exchange between the hydroxide ligand and the deuterated benzene. In addition, complex 1 catalyzes H/D exchange between H2O and C6D6. Mechanistic and computational studies suggest that a likely reaction pathway for the H/D exchange involves loss of PMe3 to produce {TpRu(PMe3)(OH)}, followed by the net addition of a benzene C-H(D) bond across the Ru-OH bond to form the putative complex TpRu(PMe3)(OH2)(Ph).  相似文献   

7.
The synthesis and physical characterization of a series of lanthanide (Ln(III)) and nickel (Ni(II)) mixed trimetallic complexes with the heptadentate (N(4)O(3)) amine phenol ligand H(3)trn [tris(2'-hydroxybenzylaminoethyl)amine] has been accomplished in order to extend our understanding of how amine phenol ligands can be used to coaggregate d- and f-block metal ions and to investigate further the magnetic interaction between these ions. The one-pot reaction in methanol of stoichiometric amounts of H(3)trn with NiX(2).6H(2)O (X = ClO(4), NO(3)) followed by addition of the corresponding LnX(3).6H(2)O salt, and then base, produces complexes of the general formula [LnNi(2)(trn)(2)]X.nH(2)O. The complexes were characterized by a variety of analytical techniques. Crystals of five of the complexes were grown from methanol solutions and their structures were determined by X-ray analysis: [PrNi(2)(trn)(2)(CH(3)OH)]ClO(4).4CH(3)OH.H(2)O, [SmNi(2)(trn)(2)(CH(3)OH)]NO(3).4CH(3)OH.2H(2)O, [TbNi(2)(trn)(2)(CH(3)OH)]NO(3).4CH(3)OH.3H(2)O, [ErNi(2)(trn)(2)(CH(3)OH)]NO(3).6CH(3)OH, and [LuNi(2)(trn)(2)(CH(3)OH)]NO(3).4.5CH(3)OH.1.5H(2)O. The [LnNi(2)(trn)(2)(CH(3)OH)](+) complex cation consists of two octahedral Ni(II) ions, each of which is encapsulated by the ligand trn(3)(-) in an N(4)O(2) coordination sphere with one phenolate O atom not bound to Ni(II). Each [Ni(trn)](-) unit acts as a tridentate ligand toward the Ln(III) ion via two bridging and one nonbridging phenolate donors. Remarkably, in all of the structurally characterized complexes, Ln(III) is seven-coordinate and has a flattened pentagonal bipyramidal geometry. Such uniform coordination behavior along the whole lanthanide series is rare and can perhaps be attributed to a mismatch between the geometric requirements of the bridging and nonbridging phenolate donors. Magnetic studies indicate that ferromagnetic exchange occurs in the Ni(II)/Ln(II) complexes where Ln = Gd, Tb, Dy, Ho, or Er.  相似文献   

8.
1INTRODUCTIONThechemistryofcompoundswithdmit(dmit=1,3 dithiole 2 thione 4,5 dithiolate)hasatractedconsiderableatentionrecentl...  相似文献   

9.
The compound, [chloro{2(1H)-pyridinethione-S}{tris(pyridin-2-ylthiolato)methyl-C,N,N′,N″]}nickel(II)], [Ni(TPTM)(SPyH)Cl], was isolated from the reaction between NiCl2 · 6H2O and tris(pyridin-2-ylthiolato)methane in aqueous EtOH. X-ray crystallography at 120 K revealed an octahedral arrangement about Ni with a tetradentate tris(pyridin-2-ylthio)methyl-C,N,N,N ligand, a monodentate 2(1H)-pyridinethione-S ligand and a chloride. The 2(1H)-pyridinethione-S ligand was derived from tris(pyridin-2-ylthio)methane probably via an acid catalysed hydrolysis reaction. Intramolecular N–H–Cl and C–H–Cl interactions help to cement the molecular structure. Weak C–H–Cl and C–H–S hydrogen bonding interactions link molecules of [Ni(TPTM)(SPyH)Cl] into a 3D array. EPR and UV spectra, and Hartree–Fock theoretical calculations are reported.  相似文献   

10.
The synthesis, characterization, and hemithioacetal isomerization reactivity of a mononuclear Ni(II) deprotonated amide complex, [(bppppa-)Ni]ClO4.CH3OH (1, bppppa- = monoanion of N,N-bis-[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine), are reported. Complex 1 was characterized by X-ray crystallography, 1H NMR, UV-vis, FTIR, and elemental analysis. Treatment of 1 with an equimolar amount of the hemithioacetal PhC(O)CH(OH)SCD3 in dry acetonitrile results in the production of the thioester PhCH(OH)C(O)SCD3 in approximately 60% yield. This reaction is conveniently monitored via 2H NMR spectroscopy. A protonated analogue of 1, [(bppppa)Ni](ClO4)2 (2), is unreactive with the hemithioacetal, thus indicating the requirement of the anionic chelate ligand in 1 for hemithioacetal isomerization reactivity. Complex 1 is unreactive with the thioester product, PhCH(OH)C(O)SCD3, which indicates that the pKa value for the PhCH(OH)C(O)SCD3 proton of the thioester must be significantly higher than the pKa value of the C-H proton of the hemithioacetal (PhC(O)CH(OH)SCD3). Complex 1 is the first well-characterized Ni(II) coordination complex to exhibit reactivity relevant to Ni(II)-containing E. coli glyoxalase I. Treatment of NiBr2.2H2O with PhC(O)CH(OH)SCD3 in the presence of 1-methylpyrrolidine also yields thioester product, albeit the reaction is slower and involves the formation of multiple -SCD3 labeled species, as detected by 2H NMR spectroscopy. The results of this study provide the first insight into hemithioacetal isomerization promoted by a synthetic Ni(II) coordination complex versus a simple Ni(II) ion.  相似文献   

11.
无模板剂液相合成Ni(OH)2花状微球   总被引:2,自引:0,他引:2  
采用一种简单的无模板剂液相合成方法制备了Ni(OH)2花状微球. 该Ni(OH)2花状微球由几十个相互连接的纳米片组成, 为α-Ni(OH)2和β-Ni(OH)2的混合晶型. 当溶液的其它条件固定时, Ni(OH)2花状微球的微观形貌随Ni(Ⅱ)浓度的变化而显著变化. 当溶液中Ni(Ⅱ)浓度为0.03 mol/L时, 花状微球粒径分布较均匀, 平均粒径约为2 μm, 微球由花瓣长度约为400 nm、厚度约为60 nm的纳米片花瓣组成. 通过观察反应过程中Ni(OH)2花状微球的微观形貌的变化, 提出了Ni(OH)2花状微球的纳米团聚-表面生长-表面溶解的形成机制.  相似文献   

12.
The synthesis, characterization, and reactivity properties of a mononuclear Ni(II) cis-beta-keto-enolate complex, [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1) (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) are reported. Complex 1 was characterized by X-ray crystallography, elemental analysis, 1H NMR, and electronic absorption and infrared spectroscopy. Treatment of 1 with 1 equiv of Me4NOH.5H2O in the presence of O2 results in oxidative carbon-carbon bond cleavage and the formation of a new Ni(II) dicarboxylate complex, [(6-Ph2TPA)Ni(O2CPh)2(H2O)] (2). Complex 2 has been characterized by X-ray crystallography, 1H NMR, UV-vis, IR, and elemental analysis. Use of 18O2 in the reaction of 1 to produce 2 results in the incorporation of one 18O atom per carboxylate ligand in the majority of the sample. Production of CO in the oxidative conversion of 1 to 2 was detected using the palladium chloride method. This is the first functional model system of relevance to acireductone dioxygenase (ARD), a novel Ni(II)-containing enzyme that catalyzes a reaction that is a shunt out of the methionine salvage pathway in K. pneumoniae.  相似文献   

13.
Chiou TW  Liaw WF 《Inorganic chemistry》2008,47(17):7908-7913
The unprecedented nickel(III) thiolate [Ni (III)(OR)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [R = Ph ( 1), Me ( 3)] containing the terminal Ni (III)-OR bond, characterized by UV-vis, electron paramagnetic resonance, cyclic voltammetry, and single-crystal X-ray diffraction, were isolated from the reaction of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) with 3 equiv of [Na][OPh] in tetrahydrofuran (THF)-CH 3CN and the reaction of complex 1 with 1 equiv of [Bu 4N][OMe] in THF-CH 3OH, respectively. Interestingly, the addition of complex 1 into the THF-CH 3OH solution of [Me 4N][OH] also yielded complex 3. In contrast to the inertness of complex [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) toward 1 equiv of [Na][OPh], the addition of 1 equiv of [Na][OMe] into a THF-CH 3CN solution of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) yielded the known [Ni (III)(CH 2CN)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) ( 4). At 77 K, complexes 1 and 3 exhibit a rhombic signal with g values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic g values of the known trigonal-bipyramidal Ni (III) [Ni (III)(L)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) (L = SePh, SEt, Cl) complexes. Compared to complexes [Ni (III)(EPh)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [E = S ( 2), Se] dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex 1 coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm. In a comparison of the Ni (III)-OMe bond length of 1.885(2) A found in complex 3, the longer Ni (III)-OPh bond distance of 1.910(3) A found in complex 1 may be attributed to the absence of sigma and pi donation from the [OPh]-coordinated ligand to the Ni (III) center.  相似文献   

14.
自放热条件下甲烷部分氧化制合成气   总被引:2,自引:0,他引:2  
毕先钧  王真 《应用化学》1999,16(1):71-73
天然气组成的90%以上是甲烷.目前由天然气制合成气的主要方法是水蒸汽重整法,这种方法投资大、设备复杂、能耗高、生产的合成气不适于直接用来合成甲醇和烃类等.甲烷部分氧化可直接制得H2与CO摩尔比为2的合成气,这是一个温和的放热过程、具有大空速和低温等优...  相似文献   

15.
A mononuclear Ni(II) complex ([(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1)), supported by the 6-Ph2TPA chelate ligand (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) and containing a cis-beta-keto-enolate ligand having a C2 hydroxyl substituent, undergoes reaction with O2 to produce a Ni(II) monobenzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)), CO, benzil (PhC(O)C(O)Ph), benzoic acid, and other minor unidentified phenyl-containing products. Complex 3 has been identified through independent synthesis and was characterized by X-ray crystallography, 1H NMR, FAB-MS, FTIR, and elemental analysis. A series of cis-beta-keto-enolate Ni(II) complexes supported by the 6-Ph2TPA ligand ([(6-Ph2TPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4), [(6-Ph2TPA)Ni(CH3C(O)CHC(O)CH3)]ClO4 (5), and [(6-Ph2TPA)Ni(PhC(O)CHC(O)C(O)Ph) (6)) have been prepared and characterized. While these complexes exhibit structural and/or spectroscopic similarity to 1, all are unreactive with O2. The results of this study are discussed in terms of relevance to Ni(II)-containing acireductone dioxygenase enzymes, as well as in the context of recently reported cofactor-free, quercetin, and beta-diketone dioxygenases.  相似文献   

16.
Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+?) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.  相似文献   

17.
标题配合物是由三齿配体N, N-二(2-苯并咪唑亚甲基)胺(IDB)、Ni(ClO4)2·6H2O与水杨酸钠在乙醇溶液中反应得到的紫色晶体。用X-射线衍射测定了其单晶结构。结果表明,该晶体属三斜晶系,P 空间群,化学式:C41H43ClN10NiO9,Mr = 914.01,a = 11.010(2),b = 13.800(3),c = 15.550(3) 牛 = 100.75(3),?= 102.97(3), = 107.56(3)? V = 2111.3(7) ?,Z = 2,F(000) = 952,Dc = 1.438 g/cm3,(MoK) = 0.591 mm-1,8215个独立可观测点(I>2(I))。最终偏离因子R(I>2(I)):R = 0.0591, wR = 0.1325;R(全部数据): R = 0.1302,wR = 0.1572。结构分析表明,镍(Ⅱ)分别与2个IDB配体中的苯并咪唑的4个氮和胺基的2个氮配位形成畸变的八面体构型。  相似文献   

18.
Hydrothermal reaction of the mixed thiolate-carboxylate-aromatic amine ligand, 6-mercaptonicotinic acid (6-mnaH2) with Co(II) and Ni(II) leads to two network coordination solids [M9(6-mna)8(mu3-O)2(OH3)2(OH2)6] (M = Co, Ni), 1, and [M2Ni12(6-mna)12(mu3-OH)2(OH2)6] x 8H2O (M = K, Rb, Cs), 2. These compounds are unusual for two reasons: they are thiolate-bridged networks and they are three-dimensional lattices which contain isolated metal clusters and chains. The magnetic behavior of these compounds has been studied, showing that 2 contains ferromagnetically coupled Ni6 wheels.  相似文献   

19.
The kinetics and mechanisms of ligand substitution reactions of the iron(III) hydroxo dimer, Fe(2)(mu-OH)(2)(H(2)O)(8)(4+), with various inorganic ligands were studied by the stopped-flow method at 10.0 or 25.0 C in 1.0 M NaClO(4). The transient formation of the following di- and tetranuclear complexes was confirmed: Fe(2)(OH)SO(4)(3+), Fe(2)(OH)H(2)PO(2)(4+), Fe(2)(OH)HPO(3)(3+), Fe(2)(OH)SeO(3)(3+), and Fe(4)(AsO(4))(OH)(2)(7+). The catalytic effect of arsenic(III) on the hydrolytic reaction of iron(III) was also attributed to the formation of a dinuclear complex at very low concentration levels. Fast formation and subsequent dissociation of the multinuclear species into the corresponding mononuclear complexes (FeL) proceed via parallel reaction paths which, in general, show composite pH dependencies. The appropriate rate laws were established. The reactions of the different ligands occur at very similar rates, though the uninegatively charged singly deprotonated form reacts about 1 order of magnitude faster than the neutral form of the same ligand. The results can conveniently be interpreted in terms of a dissociative interchange mechanism which postulates the formation of an intermediate complex in which the ligand is coordinated to only one Fe(III) center of the hydroxo dimer. In a subsequent fast step, the ligand forms a bridge between the two metal ions by replacing one of the OH groups. The dissociation of the dinuclear complex into FeL most likely proceeds via the same intermediate.  相似文献   

20.
ZrO2—SiO2负载Cu—Ni催化剂的CO2加氢反应性能   总被引:7,自引:0,他引:7  
采用表面反应改性法,制备了ZrO2-SiO2(ZrSiO)表面复合物载体,用等体积浸渍法制备了ZrSiO担载的Cu-Ni双金属催化剂,借助BET、TPR、IR和微反等技术,研究了ZrSiO及其负载的Ni、Cu双金属催化剂的表面构造,化学吸附及催化CO2加氢的反应性能,结果表明,ZrSiO表面主要是价联型结构,ZrO2引入SiO2表面,可以有效地促进CuO和NiO的还原,在ZrSiO负载的Cu-Ni催化剂表面的Cu或Ni位,CO2发生化学 吸附形成线、剪式、卧式吸附态,在该催化剂上CO2的加氢反应产物主要是CH3OH3、CH4、CO和H2O生成CH3OH的选择性与催化剂组成及反应条件密切相关,在适当的条件,CH3OH的选择性大于90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号