首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of hybrid mesoporous materials incorporating polymeric assemblies as versatile functional units has become a very fertile research area offering major opportunities for controlling molecular transport through interfaces. However, the creation of such functional materials depends critically on our ability to assemble polymeric units in a predictable manner within mesopores with dimensions comparable to the size of the macromolecular blocks themselves. In this work, we describe for the first time the manipulation of the molecular transport properties of mesoporous silica thin films by the direct infiltration of polyelectrolytes into the inner environment of the 3D porous framework. The hybrid architectures were built up through the infiltration-electrostatic assembly of polyallylamine (PAH) on the mesopore silica walls, and the resulting systems were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry and X-ray photoelectron spectroscopy, among others. Our results show that the infiltration-assembly of PAH alters the intrinsic cation-permselective properties of mesoporous silica films, rendering them ion-permeable mesochannels and enabling the unrestricted diffusion of cationic and anionic species through the hybrid interfacial architecture. Contrary to what happens during the electrostatic assembly of PAH on planar silica films (quantitative charge reversal), the surface charge of the mesoporous walls is completely neutralized upon assembling the cationic PAH layer (i.e., no charge reversal occurs). We consider this work to have profound implications not only on the molecular design of multifunctional mesoporous thin films but also on understanding the predominant role of nanoconfinement effects in dictating the functional properties of polymer-inorganic hybrid nanomaterials.  相似文献   

2.
Polymer brushes have been widely used as functional surface coatings for broad applications including antifouling, energy storage, and lubrications. Understanding the molecule dynamics at polymer brush interfaces is important in unraveling the structure–property relationships in these materials and establishing a new materials design paradigm of novel functional polymer thin films with efficient interfacial transport. By applying modern fluorescence‐based single‐molecule spectroscopic and microscopic techniques, molecule dynamics at varied polymer brush interfaces have been experimentally investigated in recent years. New insights are given to the understandings of some unique and unusual materials properties of polymer brush thin films. This review summarizes some recent studies of molecular diffusion at polymer brush interfaces, highlights some new understandings of the interfacial properties of polymer brushes, and discusses future research opportunities in this field. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 85–103  相似文献   

3.
A new one-step method is reported for the deposition of hybrid mesoporous thin films on various electrode surfaces (gold, platinum, glassy carbon). Deposition was achieved by spin-coating sol–gel mixtures in the presence of a surfactant template to get mesostructured thin layers on the various conducting substrates. Film formation occurred by evaporation induced self-assembly (EISA) involving the hydrolysis and (co)condensation of silane and/or organosilane precursors on the electrode surface. Extraction of the surfactant from the ordered mesoporous films led to a large increase of mass transport rates into the materials and imparted high accessibility to the organic moieties in case of functionalized mesoporous overlayers. The electrochemical properties of the film-modified electrodes have been studied by cyclic voltammetry (CV), and also via the chemical accumulation of mercury ions prior to their stripping analysis by differential pulse voltammetry (i.e. for thiol-functionalized thin films). Some evidences to support the formation of self-assembled monolayers (SAMs) on electrodes, have been also discussed. The formation of well-adhering mesoporous thin films on solid electrode surfaces is expected to have a high impact on the development of new electrochemical sensors.  相似文献   

4.
《Comptes Rendus Chimie》2003,6(8-10):1185-1192
Macromolecular electrolytes thin films of nanometer thickness on a surface of polymeric membrane have been prepared by a simple method using well controlled nano-sized materials such as star shaped macromolecules, brushes and dendrimers, and characterized by the gas transport properties. Metal ions in macromolecular electrolytes are readily reduced by UV irradiation to form metal nanoparticles as well as metal nanoparticle pattern adhered on a polymer support. To cite this article: J. Won et al., C. R. Chimie 6 (2003).  相似文献   

5.
Organosilicon polymers show great utility as both biocompatible and electrically insulating materials. In this work, thin films of a novel organosilicon polymer are synthesized by initiated chemical vapor deposition utilizing trivinyltrimethylcyclotrisiloxane as a monomer and tert-butyl peroxide as a free-radical-generating initiator. Use of an initiator allows for the formation of polymer films at filament temperatures as low as 250 degrees C, significantly lower than those required to thermally polymerize the monomer species. The mild reaction conditions allow for the retention of all siloxane ring moieties within the resulting polymer. Films deposited at filament temperatures of 600 degrees C or higher exhibit damage to this moiety. The all-dry deposition process generates a highly cross-linked matrix material in which over 95% of the vinyl moieties present on the monomer units have been reacted out to form linear polymerized hydrocarbon chains. While each hydrocarbon backbone chain averages 8.9 monomer units in length, as evaluated by X-ray photoelectron spectroscopy analysis, each monomer unit is involved in three independent chains, resulting in polymer films of such high molecular weight that they are completely insoluble. Kinetic analysis of the deposition process indicates that the film formation rate is limited by the adsorption of reactive species to the deposition substrate, with an apparent activation energy of -23.2 kJ/mol with respect to the substrate temperature. These results are consistent with a surface growth mechanism, ideal for the coating of nonuniform or high aspect ratio substrates.  相似文献   

6.
In this paper, we report a facile way to fabricate biomimetic high performance optical hybrid films with excellent antireflective and antifogging properties by one-step spin-coating the mixture of mesoporous SiO(2) particles and SiO(2) sol. The production process of the films is easy, low-cost, and time-efficient. Mesoporous SiO(2) particles containing surfactants disperse in SiO(2) sol stably without any chemical modification, which decrease the effective refractive index and increase the transmittance of the films. In addition, such films possess superhydrophilic properties and exhibit high performance antifogging properties. Due to the good film forming performance of SiO(2) sol, mesoporous SiO(2) particles are embedded in the films and impart the films high mechanical stability and durability. The surface morphology of the films can maintain well after repeated friction, and the performances of antireflective and antifogging also do not change as well.  相似文献   

7.
We report a facile strategy to grow supramolecular copolymers on Au surfaces by successively exposing a surface‐anchored monomer to solutions of oppositely charged peptide comonomers. Charge regulation on the active chain end of the polymer sufficiently slows down the kinetics of the self‐assembly process to produce kinetically trapped copolymers at near‐neutral pH. We thereby achieve architectural control at three levels: The β‐sheet sequences direct the polymerization away from the surface, the height of the supramolecular copolymer brushes is well‐controlled by the stepwise nature of the alternating copolymer growth, and 2D spatial resolution is realized by using micropatterned initiating monomers. The programmable nature of the resulting architectures renders this concept attractive for the development of customized biomaterials or chiral interfaces for optoelectronics and sensor applications.  相似文献   

8.
Perfluorocarbon thin films and polymer brushes were formed on stainless steel 316 L (SS316L) to control the surface properties of the metal oxide. Substrates modified with the films were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), contact angle analysis, atomic force microscopy (AFM), and cyclic voltammetry (CV). Perfluorooctadecanoic acid (PFOA) was used to form thin films by self-assembly on the surface of SS316L. Polypentafluorostyrene (PFS) polymer brushes were formed by surface-initiated polymerization using SAMs of 16-phosphonohexadecanoic acid (COOH-PA) as the base. PFOA and PFS were effective in significantly reducing the surface energy and thus the interfacial wetting properties of SS316L. The SS316L control exhibited a surface energy of 38 mN/m compared to PFOA and PFS modifications, which had surface energies of 22 and 24 mN/m, respectively. PFOA thin films were more effective in reducing the surface energy of the SS316L compared to PFS polymer brushes. This is attributed to the ordered PFOA film presenting aligned CF(3) terminal groups. However, PFS polymer brushes were more effective in providing corrosion protection. These low-energy surfaces could be used to provide a hydrophobic barrier that inhibits the corrosion of the SS316L metal oxide surface.  相似文献   

9.
A new method of supramolecular polymerization at the water–oil interface is developed. As a demonstration, an oil‐soluble supramonomer containing two thiol end groups linked by two ureidopyrimidinone units and a water‐soluble monomer bearing two maleimide end groups are employed. Supramolecular interfacial polymerization can be implemented by a thiol–maleimide click reaction at the water–chloroform interface to obtain supramolecular polymeric films. The glass transition temperature of such supramolecular polymers can be well‐tuned by simply changing the polymerization time and temperature. It is highly anticipated that this work will provide a facile and general approach to realize control over supramolecular polymerization by transferring the preparation of supramolecular polymers from solutions to water–oil interfaces and construct supramolecular materials with well‐defined properties.  相似文献   

10.
Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR) spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(VI, V), and the bleaching process of composite thin films is closely related to the presence of oxygen.  相似文献   

11.
温敏材料由于优异的性能和潜在的应用价值而具有良好的发展前景.利用超分子自组装单层(SAM)与表面引发聚合(SIP)技术将2-(2-甲氧乙氧基)甲基丙烯酸乙酯(MEO2MA)与聚乙二醇甲基丙烯酸酯(OEGMA526)的共聚物poly(MEO2MAco-OEGMA526)接枝于金表面,探索了不同引发剂溶液浓度(χIsol)、单体OEGMA526摩尔浓度(C526)与干态膜厚度(d)对该高分子刷性质的影响.应用石英晶体微天平(QCM)对其温敏行为进行研究,结果表明:在χIsol=1%与C526=5%条件下制备的高分子刷,最低临界溶解温度(LCST)为34℃;其LCST由OEGMA526的单体摩尔浓度决定,不受膜厚的影响.该高分子刷在接枝生物素后其与链霉亲和素的结合实验证明,高分子刷末端的羟基为其官能团化提供了契机.该易衍生化温敏高分子刷为发展新型温敏材料提供了研究基础.  相似文献   

12.
By utilizing surfactant aggregates as supramolecular templates, mesoporous and mesostructured silicas with highly ordered structures became available. The resulting mesoporous silicas are promising candidates to host various photo- and electro-active species along with catalytically active species, due to their large and controllable pore sizes, highly ordered pore arrangements with low dimensional geometries, and reactive surfaces. We have developed the rapid solvent evaporation method, which is a modified sol-gel process, for synthesizing the mesostructured silica-surfactant films as well as the mesoporous silica films. Supported thin films, self-standing films and bubbles of mesoporous silicas have been synthesized by the rapid solvent evaporation method. The microstructures of the films have also been successfully controlled by changing the synthetic conditions. Taking advantage of the ease of synthetic operation and the transparency and homogeneity of the resulting materials, we have been interested in the introduction of functional units into the mesostructured materials. This paper reports the synthesis of transparent films of titanium- and aluminum-containing nanoporous silicas to modify the surface properties (such as adsorptive and catalytic) of nanoporous silicas. The incorporation of Al led to the formation of cation exchange or acidic sites on the mesopore surface, as revealed by the cationic dye adsorption experiments. The photocatalytic reactions of the Ti-containing nanoporous silica films were also examined.  相似文献   

13.
Single‐layered two‐dimensional (2D) ultrathin mesoporous polymer/carbon films are grown by self‐assembly of monomicelles at the interfaces of various substrates, which is a general and common modification strategy. These unconventional 2D mesoporous films possess only a single layer of mesopores, while the size of the thin films can grow up to inch size in the plane. Free‐standing transparent mesoporous carbon ultrathin films, together with the ordered mesoporous structure on the substrates of different compositions (e.g. metal oxides, carbon) and morphologies (e.g. nanocubes, nanodiscs, flexible and patterned substrates) have been obtained. This strategy not only affords controllable hierarchical porous nanostructures, but also appends the easily modified and multifunctional properties of carbon to the primary substrate. By using this method, we have fabricated Fe2O3–mesoporous carbon photoelectrochemical biosensors, which show excellent sensitivity and selectivity for glutathione.  相似文献   

14.
A bifunctional substituted dithienylcyclopentene photochromic switch bearing electropolymerisable methoxystyryl units, which enable immobilization of the photochromic unit on conducting substrates, is reported. The spectroscopic, electrochemical, and photochemical properties of a monomer in solution are compared with those of the polymer formed through oxidative electropolymerization. The electroactive polymer films prepared on gold, platinum, glassy carbon, and indium titanium oxide (ITO) electrodes were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The thickness of the films formed is found to be limited to several monolayer equivalents. The photochromic properties and stability of the polymer films have been investigated by UV/vis spectroscopy, electrochemistry, and XPS. Although the films are electrochemically and photochemically stable, their mechanical stability with respect to adhesion to the electrode was found to be sensitive to both the solvent and the electrode material employed, with more apolar solvents, glassy carbon, and ITO electrodes providing good adhesion of the polymer film. The polymer film is formed consistently as a thin film and can be switched both optically and electrochemically between the open and closed state of the photochromic dithienylethene moiety.  相似文献   

15.
The terahertz absorption coefficient, index of refraction, and conductivity of nanostructured ZnO have been determined using time-resolved terahertz spectroscopy, a noncontact optical probe. ZnO properties were measured directly for thin films and were extracted from measurements of nanowire arrays and mesoporous nanoparticle films by applying Bruggeman effective medium theory to the composite samples. Annealing significantly reduces the intrinsic carrier concentration in the ZnO films and nanowires, which were grown by chemical bath deposition. The complex-valued, frequency-dependent photoconductivities for all morphologies were found to be similar at short pump-probe delay times. Fits using the Drude-Smith model show that films have the highest mobility, followed by nanowires and then nanoparticles, and that annealing the ZnO increases its mobility. Time constants for decay of photoinjected electron density in films are twice as long as those in nanowires and more than 5 times those for nanoparticles due to increased electron interaction with interfaces and grain boundaries in the smaller-grained materials. Implications for electron transport in dye-sensitized solar cells are discussed.  相似文献   

16.
Composite films of a meso-(tetramethylpyridinium)porphyrin (TMPyP) hybrid incorporated in mesoporous silica (MPS) and cast on a methyl viologen (MV2+)/titania nanosheet hybrid were synthesized and a light-induced charge separation between the two could be observed. These composite thin films were able to initiate a one-electron reduction of the MV2+ ions accompanied by the simultaneous decomposition of the TMPyP organic dye within the mesoporous silica channels.  相似文献   

17.
采用蒸发诱导自组装法制备了高度有序的TiO2介孔薄膜. 利用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段对其进行了表征. 结果表明, 所得样品的孔径约为5 nm, 孔道规则, 且骨架为纯锐钛矿结构. 紫外-可见光谱(UV-Vis)的表征结果表明, 制备的TiO2介孔薄膜对波长小于380 nm的紫外线有很强的吸收. 对TiO2介孔薄膜的I-V(电流-电压)特性进行了表征, 发现加光后其I-V曲线由暗态时的肖特基特性转变为欧姆特性, 表明TiO2介孔薄膜对紫外光有很敏感的光电响应.  相似文献   

18.
Spin-coated poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) films of different molecular weights (Mn= 9-255 kg/mol), both in the pristine and annealed state, were studied in an effort to elucidate changes in the polymer packing structure and the effects this structure has on the optoelectronic and charge transport properties of these films. A model based on quantum chemical calculations, wide-angle X-ray scattering, atomic force microscopy, Raman spectroscopy, photoluminescence, and electron mobility measurements was developed to describe the restructuring of the polymer film as a function of polymer chain length and annealing. In pristine high molecular weight films, the polymer chains exhibit a significant torsion angle between the F8 and BT units, and the BT units in neighboring chains are close to one another. Annealing films to sufficiently high transition temperatures allows the polymers to adopt a lower energy configuration in which the BT units in one polymer chain are adjacent to F8 units in a neighboring chain ("alternating structure"), and the torsion angle between F8 and BT units is reduced. This restructuring, dictated by the strong dipole on the BT unit, subsequently affects the efficiencies of interchain electron transfer and exciton migration. Films exhibiting the alternating structure show significantly lower electron mobilities than those of the pristine high molecular weight films, due to a decrease in the efficiency of interchain electron transport in this structure. In addition, interchain exciton migration to low energy weakly emissive states is also reduced for these alternating structure films, as observed in their photoluminescence spectra and efficiencies.  相似文献   

19.
We report herein a new triptycene derivative ( 1 ) with an azo functional group. This molecule has been used as a monomer to yield two linear polymers ( TAFPs ) that have several triptycene units dangling from the linear polymer chain. TAFPs are soluble in organic solvents and are thermally stable. TAFPs can be cast into thin films. Further, these polymers are fluorescent with emission intensity increasing upon irradiation with ultraviolet light due to photoisomerization of the azo groups present in them. The fluorescence of TAFPs are quenched in the presence of C60, which supports their strong affinity for each other. Since both TAFP1 and TAFP2 form stable thin films of uniform thickness over large area coupled with their interaction with C60, these polymers may find potential applications in the development of optoelectronic devices or as molecular sensors in supramolecular chemistry.  相似文献   

20.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号