首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of low-spin, six-coordinate complexes [Fe(TBzTArP)L(2)]X (1) and [Fe(TBuTArP)L(2)]X (2) (X = Cl(-), BF(4)(-), or Bu(4)N(+)), where the axial ligands (L) are HIm, 1-MeIm, DMAP, 4-MeOPy, 4-MePy, Py, and CN(-), were prepared. The electronic structures of these complexes were examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopy as well as density functional theory (DFT) calculations. In spite of the fact that almost all of the bis(HIm), bis(1-MeIm), and bis(DMAP) complexes reported previously (including 2) adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, the corresponding complexes of 1 show the (d(xz), d(yz))(4)(d(xy))(1) ground state at ambient temperature. At lower temperature, the electronic ground state of the HIm, 1-MeIm, and DMAP complexes of 1 changes to the common (d(xy))(2)(d(xz), d(yz))(3) ground state. All of the other complexes of 1 and 2 carrying 4-MeOPy, 4-MePy, Py, and CN(-) maintain the (d(xz), d(yz))(4)(d(xy))(1) ground state in the NMR temperature range, i.e., 298-173 K. The EPR spectra taken at 4.2 K are fully consistent with the NMR results because the HIm and 1-MeIm complexes of 1 and 2 adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, as revealed by the rhombic-type spectra. The DMAP complex of 1 exists as a mixture of two electron-configurational isomers. All of the other complexes adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state, as revealed by the axial-type spectra. Among the complexes adopting the (d(xz), d(yz))(4)(d(xy))(1) ground state, the energy gap between the d(xy) and d(π) orbitals in 1 is always larger than that of the corresponding complex of 2. Thus, it is clear that the benzoannelation of the porphyrin ring stabilizes the (d(xz), d(yz))(4)(d(xy))(1) ground state. The DFT calculation of the bis(Py) complex of analogous iron(III) porphyrinate, [Fe(TPTBzP)(Py)(2)](+), suggests that the (d(xz), d(yz))(4)(d(xy))(1) state is more stable than the (d(xy))(2)(d(xz), d(yz))(3) state in both ruffled and saddled conformations. The lowest-energy states in the two conformers are so close in energy that their ordering is reversed depending on the calculation methods applied. On the basis of the spectroscopic and theoretical results, we concluded that 1, having 4-MeOPy, 4-MePy, and Py as axial ligands, exists as an equilibrium mixture of saddled and ruffled isomers both of which adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state. The stability of the (d(xz), d(yz))(4)(d(xy))(1) ground state is ascribed to the strong bonding interaction between the iron d(xy) and porphyrin a(1u) orbitals in the saddled conformer caused by the high energy of the a(1u) highest occupied molecular orbital in TBzTArP. Similarly, a bonding interaction occurs between the d(xy) and a(2u) orbitals in the ruffled conformer. In addition, the bonding interaction of the d(π) orbitals with the low-lying lowest unoccupied molecular orbital, which is an inherent characteristic of TBzTArP, can also contribute to stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state.  相似文献   

2.
There are two types of electron configurations, (d(xy))(2)(d(xz), d(yz))(3) and (d(xz), d(yz))(4)(d(xy))(1), in low-spin iron(III) porphyrin complexes. To reveal the solvent effects on the ground-state electron configurations, we have examined the (13)C- and (1)H-NMR spectra of low-spin dicyano[meso-tetrakis(2,4,6-triethylphenyl)porphyrinato]ferrate(III) in a variety of solvents, including protic, dipolar aprotic, and nonpolar solvents. On the basis of the NMR study, we have reached the following conclusions: (i) the complex adopts the ground state with the (d(xz), d(yz))(4)(d(xy))(1) electron configuration, the (d(xz), d(yz))(4)(d(xy)())(1) ground state, in methanol, because the d(pi) orbitals are stabilized due to the O-H...N hydrogen bonding between the coordinated cyanide and methanol; (ii) the complex also exhibits the (d(xz), d(yz))(4)(d(xy))(1) ground state in nonpolar solvents, such as chloroform and dichloromethane, which is ascribed to the stabilization of the d(pi) orbitals due to the C-H...N weak hydrogen bonding between the coordinated cyanide and the solvent molecules; (iii) the complex favors the (d(xz), d(yz))(4)(d(xy))(1) ground state in dipolar aprotic solvents, such as DMF, DMSO, and acetone, though the (d(xz), d(yz))(4)(d(xy))(1) character is less than that in chloroform and dichloromethane; (iv) the complex adopts the (d(xy))(2)(d(xz), d(yz))(3) ground state in nonpolar solvents, such as toluene, benzene, and tetrachloromethane, because of the lack of hydrogen bonding in these solvents; (v) acetonitrile behaves like nonpolar solvents, such as toluene, benzene, and tetrachloromethane, though it is classified as a dipolar aprotic solvent. Although the NMR results have been interpreted in terms of the solvent effects on the ordering of the d(xy) and d(pi) orbitals, they could also be interpreted in terms of the solvent effects on the population ratios of two isomers with different electron configurations. In fact, we have observed the unprecedented EPR spectra at 4.2 K which contain both the axial- and large g(max)-type signals in some solvents such as benzene, toluene, and acetonitrile. The observation of the two types of signals has been ascribed to the slow interconversion on the EPR time scale at 4.2 K between the ruffled complex with the (d(xz), d(yz))(4)(d(xy))(1) ground state and, possibly, the planar (or nearly planar) complex with the (d(xy))(2)(d(xz), d(yz))(3) ground state.  相似文献   

3.
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin state with the (d xy ) (2)(d xz , d yz ) (3) ground state in a wide temperature range where the (1)H NMR and EPR spectra are taken. In contrast, the complexes with much weaker axial ligands, such as 4-CNPy and 3,5-Cl 2Py, exhibit the spin transition from the mainly S = 3/2 at 298 K to the S = 1/2 with the (d xy ) (2)(d xz , d yz ) (3) ground state at 4 K. Only the THF complex has maintained the S = 3/2 throughout the temperature range examined. Thus, the electronic structures of 1 resemble those of the corresponding iron(III) octaethylporphyrins, [Fe(OEP)L 2] (+/-) ( 2). A couple of differences have been observed, however, in the electronic structures of 1 and 2. One of the differences is the electronic ground state in low-spin bis( (t)BuNC) complexes. While [Fe(OEP)( (t)BuNC) 2] (+) adopts the (d xz , d yz ) (4)(d xy ) (1) ground state, like most of the bis( (t)BuNC) complexes reported previously, [Fe(MAzP)( (t)BuNC) 2] (+) has shown the (d xy ) (2)(d xz , d yz ) (3) ground state. Another difference is the spin state of the bis(3,5-Cl 2Py) complexes. While [Fe(OEP)(3,5-Cl 2Py) 2] (+) has maintained the mixed S = 3/2 and 5/2 spin state from 298 to 4 K, [Fe(MAzP)(3,5-Cl 2Py) 2] (+) has shown the spin transition mentioned above. These differences have been ascribed to the narrower N4 cavity and the presence of lower-lying pi* orbital in MAzP as compared with OEP.  相似文献   

4.
Bis(pyridine)[meso-tetrakis(heptafluoropropyl)porphyrinato]iron(III), [Fe(THFPrP)Py(2)](+), was reported to be the low-spin complex that adopts the purest (d(xz), d(yz))(4)(d(xy))(1) ground state where the energy gap between the iron d(xy) and d(π)(d(xz), d(yz)) orbitals is larger than the corresponding energy gaps of any other complexes reported previously (Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999, 121, 5196-5209). Although the highly ruffled porphyrin core expected for this complex contributes to the stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state, the strongly electron withdrawing C(3)F(7) groups at the meso positions should stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Thus, we have reexamined the electronic structure of [Fe(THFPrP)Py(2)](+) by means of (1)H NMR, (19)F NMR, and electron paramagnetic resonance (EPR) spectroscopy. The CD(2)Cl(2) solution of [Fe(THFPrP)Py(2)](+) shows the pyrrole-H signal at -10.25 ppm (298 K) in (1)H NMR, the CF(2)(α) signal at -74.6 ppm (298 K) in (19)F NMR, and the large g(max) type signal at g = 3.16 (4.2 K) in the EPR. Thus, contrary to the previous report, the complex is unambiguously shown to adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state. Comparison of the spectroscopic data of a series of [Fe(THFPrP)L(2)](+) with those of the corresponding meso-tetrapropylporphyrin complexes [Fe(TPrP)L(2)](+) with various axial ligands (L) has shown that the meso-C(3)F(7) groups stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Therefore, it is clear that the less common (d(xz), d(yz))(4)(d(xy))(1) ground state can be stabilized by the three major factors: (i) axial ligand with low-lying π* orbitals, (ii) ruffled porphyrin ring, and (iii) electron donating substituent at the meso position.  相似文献   

5.
The six-coordinate iron(III) porphyrin complex, [Fe(T(i)PrP)(2-MeBzIm)(2)](+), having the most ruffled porphyrin ring shows some unusual properties; the complex adopts the pure (d(xz), d(yz))(4)(d(xy))(1) ground state below 200 K in spite of the coordination of an imidazole ligand and exhibits the rare spin transition to the (d(xz), d(yz))(3)(d(xy))(1)(d(z2))(1) state at higher temperature.  相似文献   

6.
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitals. As for the bis(HIm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(HIm) complexes. Since these complexes adopt the (d(xy))2(d(xz), d(yz))3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dpi orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3e(g)-like orbitals. A fairly small substituent effect is understandable because the 3e(g)-like orbitals have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial HIm is replaced by (t)BuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(HIm) complexes. Since the bis((t)BuNC) complexes adopt the (d(xz), d(yz))4(d(xy))1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitals that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (d(xz), d(yz))4(d(xy))1 ground state should take place between the d(xy) and a(2u)-like orbital rather than between the dxy and a(1u)-like orbital, though the latter interaction is symmetry-allowed in saddled D(2d) complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the d(xy) orbital due to a smaller energy gap between the d(xy) and dpi orbitals. In fact, the energy levels of the d(xy) and dpi orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (d(xy))2(d(xz), d(yz))3 ground state despite the coordination of (t)BuNC.  相似文献   

7.
A series of low-spin six-coordinate (tetraphenylchlorinato)iron(III) complexes [Fe(TPC)(L)2]+/- (L = 1-MeIm, CN-, 4-CNPy, and (t)BuNC) have been prepared, and their (13)C NMR spectra have been examined to reveal the electronic structure. These complexes exist as the mixture of the two isomers with the (d(xy))2(d(xz), d(yz))3 and (d(xz), d(yz))4(d(xy))1 ground states. Contribution of the (d(xz), d(yz))4(d(xy))1 isomer has increased as the axial ligand changes from 1-MeIm, to CN(-) (in CD2Cl2 solution), CN- (in CD(3)OD solution), and 4-CNPy, and then to tBuNC as revealed by the meso and pyrroline carbon chemical shifts; the meso carbon signals at 146 and -19 ppm in [Fe(TPC)(1-MeIm)2]+ shifted to 763 and 700 ppm in [Fe(TPC)(tBuNC)2]+. In the case of the CN- complex, the population of the (d(xz), d(yz))4(d(xy))1 isomer has increased to a great extent when the solvent is changed from CD2Cl2 to CD3OD. The result is ascribed to the stabilization of the d(xz) and d(yz) orbitals of iron(III) caused by the hydrogen bonding between methanol and the coordinated cyanide ligand. Comparison of the 13C NMR data of the TPC complexes with those of the TPP, OEP, and OEC complexes has revealed that the populations of the (d(xz), d(yz))4(d(xy))1 isomer in TPC complexes are much larger than those in the corresponding TPP, OEC, and OEP complexes carrying the same axial ligands.  相似文献   

8.
The bis-(1,1-dimethylethylisocyanide) (tert-butylisocyanide) complexes of three iron porphyrinates (2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin, OETPP; 2,3,7,8,12,13,17,18-octamethyl-5,10,15,20-tetraphenylporphyrin, OMTPP; and 2,3,7,8,12,13,17,18-tetra-beta,beta'-tetramethylene-5,10,15,20-tetraphenylporphyrin, TC(6)TPP) have been prepared and studied by EPR and (1)H NMR spectroscopy. From EPR and NMR spectroscopic results it has been found that the ground states of the bis-(t-BuNC) complexes of OETPP, OMTPP, and TC(6)TPP are represented mainly (99.1-99.4%) as (d(xz,)d(yz))(4)(d(xy))(1) electron configurations, with an excited state lying 700 cm(-)(1) to higher energy for the OMTPP complex, and probably at lower and higher energies, respectively, for the OETPP and TC(6)TPP complexes. In the (1)H NMR spectra the (d(xz,)d(yz))(4)(d(xy))(1) electron configurations of all three complexes are indicated by the large and positive meso-phenyl-H shift differences, delta(m)-delta(o) and delta(m)-delta(p), and close to the diamagnetic shifts of groups (CH(3) or CH(2)) directly attached to the beta-carbons. However, in comparison to meso-only substituted porphyrinates such as [FeTPP(t-BuNC)(2)]ClO(4), the meso-phenyl shift differences are much smaller, especially for the OETPP complex. 2D NOESY spectra show that the flexibility of the porphyrin core decreases with increasing nonplanar distortion in the order TC(6)TPP > OMTPP > OETPP and in the same order the stability of the binding to t-BuNC ligands decreases. In addition, the structures of two crystalline forms of [FeOMTPP(t-BuNC)(2)]ClO(4) have been determined by X-ray crystallography. Both structures showed purely saddled porphyrin cores and somewhat off-axis binding of the isocyanide ligands. To our knowledge, this is the first example of a porphyrin complex with a purely saddled conformation that adopts the (d(xz,)d(yz))(4)(d(xy))(1) ground state. All structurally-characterized complexes of this electron configuration reported previously are ruffled. Therefore, we conclude that a ruffled geometry stabilizes the (d(xz,)d(yz))(4)(d(xy))(1) ground state, but is not necessary for its existence.  相似文献   

9.
A series of bis-axially ligated complexes of iron(III) tetramesitylporphyrin, TMPFe(III), tetra-(2,6-dibromophenyl)porphyrin, (2,6-Br2)4TPPFe(III), tetra-(2,6-dichlorophenyl)porphyrin, (2,6-Cl2)4TPPFe(III), tetra-(2,6-difluorophenyl)porphyrin, (2,6-F2)4TPPFe(III), and tetra-(2,6-dimethoxyphenyl)porphyrin, (2,6-(OMe)2)4TPPFe(III), where the axial ligands are 1-methylimidazole, 2-methylimidazole, and a series of nine substituted pyridines ranging in basicity from 4-(dimethylamino)pyridine (pK(a)(PyH(+)) = 9.70) to 3- and 4-cyanopyridine (pKa(PyH+) = 1.45 and 1.1, respectively), have been prepared and characterized by EPR and 1H NMR spectroscopy. The EPR spectra, recorded at 4.2 K, show "large g(max)", rhombic, or axial signals, depending on the iron porphyrinate and axial ligand, with the g(max) value decreasing as the basicity of the pyridine decreases, thus indicating a change in electron configuration from (d(xy))2(d(xz),d(yz)3 to (d(xz),d(yz))4(d(xy))1 through each series at this low temperature. Over the temperature range of the NMR investigations (183-313 K), most of the high-basicity pyridine complexes of all five iron(III) porphyrinates exhibit simple Curie temperature dependence of their pyrrole-H paramagnetic shifts and beta-pyrrole spin densities, rho(C) approximately 0.015-0.017, that are indicative of the S = 1/2 (d(xy))(2)(d(xz),d(yz))(3) electron configuration, while the temperature dependences of the pyrrole-H resonances of the lower-basicity pyridine complexes (pK(a)(PyH(+)) < 6.00) show significant deviations from simple Curie behavior which could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in this laboratory that includes consideration of a thermally accessible excited state. In most cases, the ground state of the lower-basicity pyridine complexes is an S = 1/2 state with a mixed (d(xy))2(d(xz),d(yz))3/(d(xz),d(yz))4(d(xy))1 electron configuration, indicating that these two are so close in energy that they cannot be separated by analysis of the NMR shifts; however, for the TMPFe(III) complexes with 3- and 4-CNPy, the ground states were found to be fairly pure (d(xz),d(yz))4(d(xy))1 electron configurations. In all but one case of the intermediate- to low-basicity pyridine complexes of the five iron(III) porphyrinates, the excited state is found to be S = 3/2, with a (d(xz),d(yz))3(d(xy))1(d(z)2)1 electron configuration, lying some 120-680 cm(-1) higher in energy, depending on the particular porphyrinate and axial ligand. Full analysis of the paramagnetic shifts to allow separation of the contact and pseudocontact contributions could be achieved only for the [TMPFe(L)2]+ series of complexes.  相似文献   

10.
A new series of iron(III) complexes are synthesized from the reaction of the polyfunctional ligands 1-benzotriazol-1-yl-1-[p-X-phenyl]hydrazono]propan-2-one (X=H, Cl, NO(2), CH(3) or OCH(3) corresponding to HL(1),HL(2), HL(3), HL(4) or HL(5), respectively, with iron(III) chloride in the presence of LiOH by the conventional and microwave induced energy methods. The conventional method led to the formation of [FeL(3)].nH(2)O but the microwave induced energy gave [FeLCl(2)], n=1-3 and L is the anion of HL(1)-HL(5). The complexes are characterized by the elemental analysis, molar conductivity, magnetic and spectral (FT-IR, UV-vis and ESR) studies. The magnetic and spectral studies showed that [FeLCl(2)] are polymeric octahedral, [Fe(L(1))(3)].H(2)O is a low spin octahedral and (d(xz),d(yz))(4) (d(xy))(1) ground state, [FeL(3)].nH(2)O, L=anion of HL(4) or HL(5) and are octahedral with intermediate spin (S=32) with ground state (d(xy))(2)(d(xz),d(yz))(3) electronic configuration while for the anions of HL(2) and HL(3), they have (t(2g))(3)(e(g))(5) admixed with (d(xy))(2)(d(xz),d(yz))(3) configurations. From the ESR data, the contribution of the high spin (S=52) and low spin (S=32) to the quantum mechanical spin intermediate (QMS), and the crystal field parameters Delta and V are calculated and related to the electronic and steric effects of the ligands. The electronic spectral data confirm that obtained from the ESR, and the different ligand field parameters as well as the pi-->t(2g), t(2g)-->e(g), e(g)-->pi*, pi-->pi* transitions are estimated and compared with that experimentally obtained.  相似文献   

11.
Iron-oxophlorin is an intermediate in heme degradation, and the nature of the axial ligand can alter the spin, electron distribution, and reactivity of the metal and the oxophlorin ring. The structure and reactivity of iron-oxophlorin in the presence of imidazole, pyridine, and t-butyl isocyanide as axial ligands was investigated using the B3LYP and OPBE methods with the 6-31+G* and 6-311+G** basis sets. OPBE/6-311+G** has shown that the doublet state of [(Py)(2)Fe(III)(PO)] (where pyridines are in perpendicular planes and PO is the oxophlorin trianion) is 3.45 and 5.27 kcal/mol more stable than the quartet and sextet states, respectively. The ground-state electronic configuration of the aforementioned complex is π(xz)(2) π(yz)(2) a(2u)(2) d(xy)(1) at low temperatures and changes to π(xz)(2) π(yz)(2) d(xy)(2) a(2u)(1) at high temperatures. This latter electronic configuration is consistently seen for the [(t-BuNC)(2)Fe(II)(PO(?))] complex (where PO(?) is the oxophlorin dianion radical). The complex [(Im)(2)Fe(III)(PO)] adopted the d(xy)(2) (π(xz) π(yz))(3) ground state and has low-lying quartet excited state which is readily populated when the temperature is increased.  相似文献   

12.
We report the results of a series of density functional theory (DFT) calculations aimed at predicting the (57)Fe M?ssbauer electric field gradient (EFG) tensors (quadrupole splittings and asymmetry parameters) and their orientations in S = 0, (1)/(2), 1, (3)/(2), 2, and (5)/(2) metalloproteins and/or model systems. Excellent results were found by using a Wachter's all electron basis set for iron, 6-311G for other heavy atoms, and 6-31G for hydrogen atoms, BPW91 and B3LYP exchange-correlation functionals, and spin-unrestricted methods for the paramagnetic systems. For the theory versus experiment correlation, we found R(2) = 0.975, slope = 0.99, intercept = -0.08 mm sec(-)(1), rmsd = 0.30 mm sec(-)(1) (N = 23 points) covering a DeltaE(Q) range of 5.63 mm s(-)(1) when using the BPW91 functional and R(2) = 0.978, slope = 1.12, intercept = -0.26 mm sec(-)(1), rmsd = 0.31 mm sec(-)(1) when using the B3LYP functional. DeltaE(Q) values in the following systems were successfully predicted: (1) ferric low-spin (S = (1)/(2)) systems, including one iron porphyrin with the usual (d(xy))(2)(d(xz)d(yz))(3) electronic configuration and two iron porphyrins with the more unusual (d(xz)d(yz))(4)(d(xy))(1) electronic configuration; (2) ferrous NO-heme model compounds (S = (1)/(2)); (3) ferrous intermediate spin (S = 1) tetraphenylporphinato iron(II); (4) a ferric intermediate spin (S = (3)/(2)) iron porphyrin; (5) ferrous high-spin (S = 2) deoxymyoglobin and deoxyhemoglobin; and (6) ferric high spin (S = (5)/(2)) metmyoglobin plus two five-coordinate and one six-coordinate iron porphyrins. In addition, seven diamagnetic (S = 0, d(6) and d(8)) systems studied previously were reinvestigated using the same functionals and basis set scheme as used for the paramagnetic systems. All computed asymmetry parameters were found to be in good agreement with the available experimental data as were the electric field gradient tensor orientations. In addition, we investigated the electronic structures of several systems, including the (d(xy))(2)(d(xz),d(yz))(3) and (d(xz),d(yz))(4)(d(xy))(1) [Fe(III)/porphyrinate](+) cations as well as the NO adduct of Fe(II)(octaethylporphinate), where interesting information on the spin density distributions can be readily obtained from the computed wave functions.  相似文献   

13.
High-valent transition-metal-substituted Keggin-type polyoxometalates (POMs) are active and robust oxidation catalyst. The important oxidized intermediates of these POM complexes are very difficult to be characterized by using the experimental method, and thus no detail information is available on such species. In the present paper, density functional theory (DFT) calculations have been carried out to characterize the electronic structures of a series of mono-ruthenium-substituted Keggin-type POMs. We find that the aquaruthenium(II/III/IV) species possess d(xy)(2)d(xz)(2)d(yz)(2), d(xy)(2)d(xz)(2)d(yz)(1), and d(xy)(2)d(xz)(1)d(yz)(1) electronic configuration, respectively, and hydroxyl/oxoruthenium(IV/V/VI) species possess d(xy)(2)d(xz)(1)π*(yz)(1), d(xy)(2)π*(xz)(1)π*(yz)(1), d(xy)(1)π*(xz)(1)π*(yz)(1), and d(xy)(1)π*(xz)(1)π*(yz)(0) electronic configuration, respectively. Mulliken spin population shows that spin density is localized on the ruthenium center in aquaruthenium(II/III/IV) POM complexes, and the RuO(a) unit in hydroxyl/oxoruthenium(IV/V/VI) POM complexes. The O(a) atom has substantial radical character in oxoruthenium(IV/V) species, and the radical character of the O(a) atom are significantly weakened in the oxoruthenium(VI) species. The relevant energy of the important Ru-O(a)π*-antibonding unoccupied orbitals with high RuO(a) compositions of oxoruthenium(IV/V/VI) POM complexes decrease in the order: oxoruthenium(IV) > oxoruthenium(V) > oxoruthenium(VI). The pH-independent multiple reduction energies for Ru(III/II), Ru(V/IV), and Ru(VI/V) couples are calculated, which is in agreement with the experimental data.  相似文献   

14.
The substrate and active site residues of the low-spin hydroxide complex of the protohemin complex of Neisseria meningitidis heme oxygenase (NmHO) have been assigned by saturation transfer between the hydroxide and previously characterized aquo complex. The available dipolar shifts allowed the quantitation of both the orientation and anisotropy of the paramagnetic susceptibility tensor. The resulting positive sign, and reduced magnitude of the axial anisotropy relative to the cyanide complex, dictate that the orbital ground state is the conventional "d(pi)" (d(2)(xy)(d(xz), d(yz))(3)); and not the unusual "d(xy)" (d(2)(xz)d(2)(yz)d(xy)) orbital ground state reported for the hydroxide complex of the homologous heme oxygenase (HO) from Pseudomonas aeruginosa (Caignan, G.; Deshmukh, R.; Zeng, Y.; Wilks, A.; Bunce, R. A.; Rivera, M. J. Am. Chem. Soc. 2003, 125, 11842-11852) and proposed as a signature of the HO distal cavity. The conservation of slow labile proton exchange with solvent from pH 7.0 to 10.8 confirms the extraordinary dynamic stability of NmHO complexes. Comparison of the diamagnetic contribution to the labile proton chemical shifts in the aquo and hydroxide complexes reveals strongly conserved bond strengths in the distal H-bond network, with the exception of the distal His53 N(epsilon)(1)H. The iron-ligated water is linked to His53 primarily by a pair of nonligated, ordered water molecules that transmit the conversion of the ligated H-bond donor (H(2)O) to a H-bond acceptor (OH(-)), thereby increasing the H-bond donor strength of the His53 side chain.  相似文献   

15.
The electronic states of a series of saddle-shaped porphyrin complexes [Fe(OMTPP)L(2)](+) and [Fe(TBTXP)L(2)](+) have been examined in solution by (1)H NMR, (13)C NMR, and EPR spectroscopy and by magnetic measurements. While [Fe(OMTPP)(DMAP)(2)](+) and [Fe(TBTXP)(DMAP)(2)](+) maintain the low-spin (S = (1)/(2)) state, [Fe(OMTPP)(THF)(2)](+) and [Fe(TBTXP)(THF)(2)](+) exhibit an essentially pure intermediate-spin (S = (3)/(2)) state over a wide range of temperatures. In contrast, the Py and 4-CNPy complexes of OMTPP and TBTXP exhibit a spin transition from S = (3)/(2) to S = (1)/(2) as the temperature was decreased from 300 to 200 K. Thus, the magnetic behavior of these complexes is similar to that of [Fe(OETPP)Py(2)](+) reported in our previous paper (Ikeue, T.; Ohgo, Y.; Yamaguchi, T.; Takahashi, M.; Takeda, M.; Nakamura, M. Angew. Chem., Int. Ed. 2001, 40, 2617-2620) in the context that all these complexes exhibit a novel spin crossover phenomenon in solution. Close examination of the NMR and EPR data of [Fe(OMTPP)L(2)](+) and [Fe(TBTXP)L(2)](+) (L = Py, 4-CNPy) revealed, however, that these complexes adopt the less common (d(xz), d(yz))(4)(d(xy))(1) electron configuration at low temperature in contrast to [Fe(OETPP)Py(2)](+) which shows the common (d(xy))(2)(d(xz), d(yz))(3) electron configuration. These observations have been attributed to the flexible nature of the OMTPP and TBTXP cores as compared with that of OETPP; the relatively flexible OMTPP and TBTXP cores can ruffle the porphyrin ring and adopt the (d(xz), d(yz))(4)(d(xy))(1) electron configuration at low temperature. Therefore, this study reveals that the rigidity of porphyrin cores is an important factor in determining the spin crossover pathways.  相似文献   

16.
A series of axially ligated complexes of iron(III) octamethyltetraphenylporphyrin, (OMTPP)Fe(III), octaethyltetraphenylporphyrin, (OETPP)Fe(III), its perfluorinated phenyl analogue, (F(20)OETPP)Fe(III), and tetra-(beta,beta'-tetramethylene)tetraphenylporphyrin, (TC(6)TPP)Fe(III), have been prepared and characterized by (1)H NMR spectroscopy: chloride, perchlorate, bis-4-(dimethylamino)pyridine, bis-1-methylimidazole, and bis-cyanide. Complete spectral assignments have been made using 1D and 2D techniques. The temperature dependences of the proton resonances of the complexes show significant deviations from simple Curie behavior and evidence of ligand exchange, ligand rotation, and porphyrin ring inversion at ambient temperatures. At temperatures below the point where dynamics effects contribute, the temperature dependences of the proton chemical shifts of the complexes could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in our laboratory that includes consideration of a thermally accessible excited state. The results show that, although the ground state differs for various axial ligand complexes and is usually fully consistent with that observed by EPR spectroscopy at 4.2 K, the excited state often has S = (3)/(2) (or S = (5)/(2) in the cases where the ground state has S = (3)/(2)). The EPR spectra (4.2 K) of bis-4-(dimethylamino)pyridine and bis-1-methylimidazole complexes show "large-g(max)" signals with g(max) = 3.20 and 3.12, respectively, and the latter also shows a normal rhombic EPR signal, indicating the presence of low-spin (LS) (d(xy))(2)(d(xz),d(yz))(3) ground states for both. The bis-cyanide complex also yields a large-g(max) EPR spectrum with g = 3.49 and other features that could suggest that some molecules have the (d(xz),d(yz))(4)(d(xy))(1) ground state. The EPR spectra of all five-coordinate chloride complexes have characteristic features of predominantly S = (5)/(2) ground-state systems with admixture of 1-10% of S = (3)/(2) character.  相似文献   

17.
The azide complexes of heme oxygenase from Pseudomonas aeruginosa (pa-HO) and Neisseriae meningitidis (nm-HO) have been studied with the aid of (1)H and (13)C NMR spectroscopy. These complexes have been shown to exist as an equilibrium mixture of two populations, one exhibiting an S = (1)/(2), (d(xy))(2)(d(xz), d(yz))(3) electron configuration and planar heme and a second with a novel S = (3)/(2), (d(xz), d(yz))(3)(d(xy))(1)(d(z)(2))(1) spin state and nonplanar heme. At physiologically relevant temperatures, the equilibrium shifts in the direction of the population exhibiting the latter electron configuration and nonplanar heme, whereas at temperatures approaching the freezing point of water, the equilibrium shifts in the direction of the population with the former electronic structure and planar heme. These findings indicate that the microenvironment of the distal pocket in heme oxygenase is unique among heme-containing proteins in that it lowers the sigma-donating (field strength) ability of the distal ligand and, therefore, promotes the attainment of heme electronic structures thus far only observed in heme oxygenase. When the field strength of the distal ligand is slightly lower than that of azide, such as OH(-) (J. Am. Chem. Soc. 2003, 125, 11842), the corresponding complex exists as a mixture of populations with nonplanar hemes and electronic structures that place significant spin density at the meso positions. The ease with which these unusual heme electronic structures are attained by heme oxygenase is likely related to activation of meso carbon reactivity which, in turn, facilitates hydroxylation of a meso carbon by the obligatory ferric hydroperoxide intermediate.  相似文献   

18.
Molybdenum-oxo ions of the type [Mo(IV)OL(4)Cl](+) (L = CNBu(t), PMe(3), (1)/(2)Me(2)PCH(2)CH(2)PMe(2)) have been studied by X-ray crystallography, vibrational spectroscopy, and polarized single-crystal electronic absorption spectroscopy (300 and ca. 20 K) in order to investigate the effects of the ancillary ligand geometry on the properties of the MotriplebondO bond. The idealized point symmetries of the [Mo(IV)OL(4)Cl](+) ions were established by X-ray crystallographic studies of the salts [MoO(CNBu(t)())(4)Cl][BPh(4)] (C(4)(v)), [MoO(dmpe)(2)Cl]Cl.5H(2)O (C(2)(v)), and [MoO(PMe(3))(4)Cl][PF(6)] (C(2)(v)()); the lower symmetries of the phosphine derivatives are the result of the steric properties of the phosphine ligands. The Motbd1;O stretching frequencies of these ions (948-959 cm(-)(1)) are essentially insensitive to the nature and geometry of the equatorial ligands. In contrast, the electronic absorption bands arising from the nominal d(xy)() --> d(xz), d(yz) (n --> pi(MoO)) ligand-field transition exhibit a large dependence on the geometry of the equatorial ligands. Specifically, the electronic spectrum of [MoO(CNBu(t)())(4)Cl](+) exhibits a single (1)[n --> pi(xz)(,)(yz)] band, whereas the spectra of both [MoO(dmpe)(2)Cl](+) and [MoO(PMe(3))(4)Cl](+) reveal separate (1)[n --> pi(xz)] and (1)[n --> pi(yz)] bands. A general theoretical model of the n --> pi state energies of structurally distorted d(2) M(triplebondE)L(4)X chromophores is developed in order to interpret the electronic spectra of the phosphine derivatives. Analysis of the n --> pi transition energies using this model indicates that the d(xz) and d(yz) pi(MotriplebondO) orbitals are nondegenerate for the C(2)(v)-symmetry ions and the n --> pi(xz) and n --> pi(yz) excited states are characterized by different two-electron terms. These effects lead to a significant redistribution of intensity between certain spin-allowed and spin-forbidden absorption bands. The applicability of this model to the excited states produced by delta --> pi and pi --> delta symmetry electronic transitions of other chromophores is discussed.  相似文献   

19.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   

20.
The iron complexes of 5,10,15,20-tetraphenyl-21-oxaporphyrin (OTPP)H have been investigated. Insertion of iron(II) followed by one-electron oxidation yielded a high-spin, six-coordinate (OTPP)Fe(III)Cl(2) complex. The reduction of (OTPP)Fe(III)Cl(2) has been accomplished by means of moderate reducing reagents producing high-spin five-coordinate (OTPP)Fe(II)Cl. The molecular structure of (OTPP)Fe(III)Cl(2) has been determined by X-ray diffraction. The iron(III) 21-oxaporphyrin skeleton is essentially planar. The furan ring coordinates in the eta(1) fashion through the oxygen atom, which acquires trigonal geometry. The iron(III) apically coordinates two chloride ligands. Addition of potassium cyanide to a solution of (OTPP)Fe(III)Cl(2) in methanol-d(4) results in its conversion to a six-coordinate, low-spin complex [OTPP)Fe(III)(CN)(2)] which is spontaneously reduced to [OTPP)Fe(II)(CN)(2)](-) by excess cyanide. The spectroscopic features of [OTPP)Fe(III)(CN)(2)] correspond to the common low-spin iron(III) porphyrin (d(xy))(2)(d(xz)d(yz))(3) electronic configuration. Titration of (OTPP)Fe(III)Cl(2) or (OTPP)Fe(II)Cl with n-BuLi (toluene-d(8), 205 K) resulted in the formation of (OTPP)Fe(II)(CH(2)CH(2)CH(2)CH(3)). (OTPP)Fe(II)(n-Bu) decomposes via homolytic cleavage of the iron-carbon bond to produce (OTPP)Fe(I). The EPR spectrum (toluene-d(8), 77 K) is consistent with a (d(xy))(2)(d(xz))(2)(d(yz))(2)(d(z)(2)(1)(d[(x)(2)-(y)(2)])(0) ground electronic state of iron(I) oxaporphyrin (g(1) = 2.234, g(2) = 2.032, g(3) = 1.990). The (1)H NMR spectra of (OTPP)Fe(III)Cl(2), (OTPP)Fe(III)(CN)(2), ([(OTPP)Fe(III))](2)O)(2+), and (OTPP)Fe(II)Cl have been analyzed. There are considerable similarities in (1)H NMR properties within each iron(n) oxaporphyrin-iron(n) regular porphyrin or N-methylporphyrin pair (n = 2, 3). Contrary to this observation, the pattern of downfield positions of pyrrole resonances at 156.2, 126.5, 76.3 ppm and furan resonance at 161.4 ppm (273 K) detected for the two-electron reduction product of (OTPP)Fe(III)Cl(2) is unprecedented in the group of iron(I) porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号