首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have investigated the slipped parallel and t-shaped structures of carbon dioxide dimer [(CO(2))(2)] using both conventional and explicitly correlated coupled cluster methods, inclusive and exclusive of counterpoise (CP) correction. We have determined the geometry of both structures with conventional coupled cluster singles doubles and perturbative triples theory [CCSD(T)] and explicitly correlated cluster singles doubles and perturbative triples theory [CCSD(T)-F12b] at the complete basis set (CBS) limits using custom optimization routines. Consistent with previous investigations, we find that the slipped parallel structure corresponds to the global minimum and is 1.09 kJ mol(-1) lower in energy. For a given cardinal number, the optimized geometries and interaction energies of (CO(2))(2) obtained with the explicitly correlated CCSD(T)-F12b method are closer to the CBS limit than the corresponding conventional CCSD(T) results. Furthermore, the magnitude of basis set superposition error (BSSE) in the CCSD(T)-F12b optimized geometries and interaction energies is appreciably smaller than the magnitude of BSSE in the conventional CCSD(T) results. We decompose the CCSD(T) and CCSD(T)-F12b interaction energies into the constituent HF or HF CABS, CCSD or CCSD-F12b, and (T) contributions. We find that the complementary auxiliary basis set (CABS) singles correction and the F12b approximation significantly reduce the magnitude of BSSE at the HF and CCSD levels of theory, respectively. For a given cardinal number, we find that non-CP corrected, unscaled triples CCSD(T)-F12b/VXZ-F12 interaction energies are in overall best agreement with the CBS limit.  相似文献   

2.
We propose a new computational protocol to obtain highly accurate theoretical reference data. This protocol employs the explicitly correlated coupled-cluster method with iterative single and double excitations as well as perturbative triple excitations, CCSD(T)(F12), using quadruple-z\zeta basis sets. Higher excitations are accounted for by conventional CCSDT(Q) calculations using double-z\zeta basis sets, while core/core-valence correlation effects are estimated by conventional CCSD(T) calculations using quadruple-z\zeta basis sets. Finally, scalar-relativistic effects are accounted for by conventional CCSD(T) calculations using triple-z\zeta basis sets. In the present article, this protocol is applied to the popular test sets AE6 and BH6. An error analysis shows that the new reference values obtained by our computational protocol have an uncertainty of less than 1 kcal/mol (chemical accuracy). Furthermore, concerning the atomization energies, a cancellation of the basis set incompleteness error in the CCSD(T)(F12) perturbative triples contribution with the corresponding error in the contribution from higher excitations is observed. This error cancellation is diminished by the CCSD(T*)(F12) method. Thus, we recommend the use of the CCSD(T*)(F12) method only for small- and medium-sized basis sets, while the CCSD(T)(F12) approach is preferred for high-accuracy calculations in large basis sets.  相似文献   

3.
We have optimized the lowest energy structures and calculated interaction energies for the CO(2)-Ar, CO(2)-N(2), CO(2)-CO, CO(2)-H(2)O, and CO(2)-NH(3) dimers with the recently developed explicitly correlated coupled cluster singles doubles and perturbative triples [CCSD(T)]-F12 methods and the associated VXZ-F12 (where X = D,T,Q) basis sets. For a given cardinal number, we find that results obtained with the CCSD(T)-F12 methods are much closer to the CCSD(T) complete basis set limit than the conventional CCSD(T) results. The relatively modest increase in the computational cost between explicit and conventional CCSD(T) is more than compensated for by the impressive accuracy of the CCSD(T)-F12 method. We recommend use of the CCSD(T)-F12 methods in combination with the VXZ-F12 basis sets for the accurate determination of equilibrium geometries and interaction energies of weakly bound electron donor acceptor complexes.  相似文献   

4.
We consider the extrapolation of the one-electron basis to the basis set limit in the context of coupled cluster calculations. We produce extrapolation coefficients that produce much more accurate results than previous extrapolation forms. These are determined by fitting to accurate benchmark results. For coupled cluster singles doubles energies, we take our benchmark results from the work of Klopper that explicitly includes the interelectronic distance. For the perturbative triples energies, our benchmark results are obtained from large even-tempered basis set calculations.  相似文献   

5.
We present an explicitly correlated version of the high-spin open-shell RMP2 method. The theory is derived in a unitarily invariant form, which is suitable for the insertion of local approximations. It is demonstrated that the rapid basis set convergence of closed-shell MP2-F12 is also achieved in RMP2-F12, and similar Ansatze and approximations can be employed. All integrals are computed using efficient density fitting approximations, and many-electron integrals are avoided using resolution of the identity approximations. The performance of the method is demonstrated by benchmark calculations on a large set of ionization potentials, electron affinities and atomization energies. Using triple-zeta basis sets RMP2-F12 yields results that are closer to the basis set limit than standard RMP2 with augmented quintuple-zeta basis sets for all properties. Different variants of perturbative corrections for the open-shell Hartree-Fock treatment are described and tested.  相似文献   

6.
An efficient method for removing the self-consistent field (SCF) diagonalization bottleneck is proposed for systems of weakly interacting components. The method is based on the equations of the locally projected SCF for molecular interactions (SCF MI) which utilize absolutely localized nonorthogonal molecular orbitals expanded in local subsets of the atomic basis set. A generalization of direct inversion in the iterative subspace for nonorthogonal molecular orbitals is formulated to increase the rate of convergence of the SCF MI equations. Single Roothaan step perturbative corrections are developed to improve the accuracy of the SCF MI energies. The resulting energies closely reproduce the conventional SCF energy. Extensive test calculations are performed on water clusters up to several hundred molecules. Compared to conventional SCF, speedups of the order of (N/O)2 have been achieved for the diagonalization step, where N is the size of the atomic orbital basis, and O is the number of occupied molecular orbitals.  相似文献   

7.
To approach the complete basis set limit of the "gold-standard" coupled-cluster singles and doubles plus perturbative triples [CCSD(T)] method, we extend the recently proposed perturbative explicitly correlated coupled-cluster singles and doubles method, CCSD(2)(R12) [E. F. Valeev, Phys. Chem. Chem. Phys. 8, 106 (2008)], to account for the effect of connected three-electron correlations. The natural choice of the zeroth-order Hamiltonian produces a perturbation expansion with rigorously separable second-order energy corrections due to the explicitly correlated geminals and conventional triple and higher excitations. The resulting CCSD(T)(R12) energy is defined as a sum of the standard CCSD(T) energy and an amplitude-dependent geminal correction. The method is technically very simple: Its implementation requires no modification of the standard CCSD(T) program and the formal cost of the geminal correction is small. We investigate the performance of the open-shell version of the CCSD(T)(R12) method as a possible replacement of the standard complete-basis-set CCSD(T) energies in the high accuracy extrapolated ab initio thermochemistry model of Stanton et al. [J. Chem. Phys. 121, 11599 (2004)]. Correlation contributions to the heat of formation computed with the new method in an aug-cc-pCVXZ basis set have mean absolute basis set errors of 2.8 and 1.0 kJmol when X is T and Q, respectively. The corresponding errors of the standard CCSD(T) method are 9.1, 4.0, and 2.1 kJmol when X=T, Q, and 5. Simple two-point basis set extrapolations of standard CCSD(T) energies perform better than the explicitly correlated method for absolute correlation energies and atomization energies, but no such advantage found when computing heats of formation. A simple Schwenke-type two-point extrapolation of the CCSD(T)(R12)aug-cc-pCVXZ energies with X=T,Q yields the most accurate heats of formation found in this work, in error on average by 0.5 kJmol and at most by 1.7 kJmol.  相似文献   

8.
A perturbative SCF CI treatment to obtain energy levels of coupled oscillator systems is proposed. The method uses the virtual SCF basis set, and the SCF equations are solved by means of a perturbative treatment that provides the diagonal matrix elements involved in the CI calculation. The off-diagonal matrix elements are calculated using a commutation relationship derived from exact quantum theorems. Numerical results for several systems are obtained and compared with those from others SCF, SCF CI , and variational treatments.  相似文献   

9.
Although supramolecular chemistry and noncovalent interactions are playing an increasingly important role in modern chemical research, a detailed understanding of prototype noncovalent interactions remains lacking. In particular, pi-pi interactions, which are ubiquitous in biological systems, are not fully understood in terms of their strength, geometrical dependence, substituent effects, or fundamental physical nature. However, state-of-the-art quantum chemical methods are beginning to provide answers to these questions. Coupled-cluster theory through perturbative triple excitations in conjunction with large basis sets and extrapolations to the complete basis set limit have provided definitive results for the binding energy of several configurations of the benzene dimer, and benchmark-quality ab initio potential curves are being used to calibrate new density functional and force-field models for pi-pi interactions. Studies of substituted benzene dimers indicate flaws in the conventional wisdom about substituent effects in pi-pi interactions. Three-body and four-body interactions in benzene clusters have also been examined.  相似文献   

10.
Isomers of Au8     
Using newly developed correlation consistent basis sets for gold, the relative energies for the neutral Au8 geometric isomers have been re-evaluated and the vertical ionization potentials calculated. The results using the correlation consistent basis sets show that second-order Moller-Plesset perturbation theory calculations strongly favor nonplanar Au8 structures for all basis sets that were employed. However, the general trend at the coupled cluster singles and doubles with perturbative triples level of theory is to increasingly favor planar structures as the basis set is improved. The effects of basis set and the effects of core-valence correlation are discussed.  相似文献   

11.
We have calculated the frequencies and intensities of the hydrogen-bonded OH-stretching transitions in the water dimer complex. The potential-energy curve and dipole-moment function are calculated ab initio at the coupled cluster with singles, doubles, and perturbative triples level of theory with correlation-consistent Dunning basis sets. The vibrational frequencies and wavefunctions are found from a numerical solution to a one-dimensional Schr?dinger equation. The corresponding transition intensities are found from numerical integration of these vibrational wavefunctions with the ab initio calculated dipole moment function. We investigate the effect of counterpoise correcting both the potential-energy surface and dipole-moment function. We find that the effect of using a numeric potential is significant for higher overtones and that inclusion of a counterpoise correction for basis set superposition error is important.  相似文献   

12.
《Chemical physics letters》2002,350(5-6):611-622
We report an extension of the local correlation concept to electronically excited states via the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) method. We apply the same orbital domain structure used successfully for ground-state CCSD by Werner and co-workers and find that the resulting localized excitation energies are in error generally by less than 0.2 eV relative to their canonical EOM-CCSD counterparts, provided the basis set is flexible and includes Rydberg-like functions. In addition, we account for weak-pair contributions efficiently using a correction to local-EOM-CCSD transition energies based on the perturbative (D) correction used with configuration interaction singles (CIS).  相似文献   

13.
The previously developed DFT-SAPT approach, which combines symmetry-adapted intermolecular perturbation theory (SAPT) with a density-functional theory (DFT) representation of the monomers, has been implemented by using density fitting of two-electron objects. This approach, termed DF-DFT-SAPT, scales with the fifth power of the molecular size and with the third power upon increase of the basis set size for a given dimer, thus drastically reducing the cost of the conventional DFT-SAPT method. The accuracy of the density fitting approximation has been tested for the ethyne dimer. It has been found that the errors in the interaction energies due to density fitting are below 10(-3) kcal/mol with suitable auxiliary basis sets and thus one or two orders of magnitude smaller than the errors due to the use of a limited atomic orbital basis set. An investigation of three prominent structures of the benzene dimer, namely, the T shaped, parallel displaced, and sandwich geometries, employing basis sets of up to augmented quadruple-zeta quality shows that DF-DFT-SAPT outperforms second-order Moller-Plesset theory (MP2) and gives total interaction energies which are close to the best estimates inferred from combining the results of MP2 and coupled-cluster theory with single, double, and perturbative triple excitations.  相似文献   

14.
The influence of the basis set size and computational method in the calculation of the magnetic coupling constant J is evaluated using a series of cuprate superconductor parent compounds as a case study. The variational DDCI method and an iterative modification, the IDDCI method, are tested, as well as the perturbative CASPT2 method, with two different reference wave functions. Results show that the DDCI magnetic coupling constant is in rather good agreement with the experiment, although it shows a moderate basis set dependency. The IDDCI results are less dependent on the size of the basis set, but slightly overestimate the magnetic coupling constant. CASPT2 results are nearly independent of the chosen basis set. With a minimal active space values are obtained that are about 20% smaller than the DDCI results. The experimental coupling constant can be reproduced when an extended reference wave function is used.  相似文献   

15.
16.
We have proposed a simple strategy for splitting the virtual orbitals with a large basis set into two subgroups (active and inactive) by taking a smaller basis set as an auxiliary basis set. With the split virtual orbitals (SVOs), triple or higher excitations can be partitioned into active and inactive subgroups (according to the number of active virtual orbitals involved), which can be treated with different electron correlation methods. In this work, the coupled cluster (CC) singles, doubles, and a hybrid treatment of connected triples based on the SVO [denoted as SVO-CCSD(T)-h], has been implemented. The present approach has been applied to study the bond breaking potential energy surfaces in three molecules (HF, F(2), and N(2)), and the equilibrium properties in a number of open-shell diatomic molecules. For all systems under study, the SVO-CCSD(T)-h method based on the unrestricted Hartree-Fock (UHF) reference is an excellent approximation to the corresponding CCSDT (CC singles, doubles, and triples), and much better than the UHF-based CCSD(T) (CC singles, doubles, and perturbative triples). On the other hand, the SVO-CCSD(T)-h method based on the restricted HF (RHF) reference can also provide considerable improvement over the RHF-based CCSD(T).  相似文献   

17.
18.
The [2](R12) method [M. Torheyden and E. F. Valeev, J. Chem. Phys. 131, 171103 (2009)] is an explicitly correlated perturbative correction that can greatly reduce the basis set error of an arbitrary electronic structure method for which the two-electron density matrix is available. Here we present a spin-adapted variant (denoted as SF-[2](R12)) that is formulated completely in terms of spin-free quantities. A spin-free cumulant decomposition and multi-reference generalized Brillouin condition are used to avoid three-particle reduced density matrix completely. The computational complexity of SF-[2](R12) is proportional to the sixth power of the system size and is comparable to the cost of the single-reference MP2-R12 method. The SF-[2](R12) method is shown to decrease greatly the basis set error of multi-configurational wave functions.  相似文献   

19.
The currently accepted D(0)((35)Cl(2)) is 239.221 ± 0.001 kJ/mol, whereas popular theoretical model chemistries provide values in the range of 233-247 kJ/mol, and even the so-called high-accuracy protocols can yield values as low as 237.9 kJ/mol and as high as 240.1 kJ/mol for D(0)((35)Cl(2)). The aim of this study was to uncover the sources of error inherent in the theoretical approaches. Therefore, a coupled-cluster-based composite model chemistry was utilized that included contributions of up to pentuple excitations, as well as corrections beyond the nonrelativistic and Born-Oppenheimer approximations. In our calculations, correlation consistent basis set families were used up to octuple-ζ basis sets. It was found that the following factors, in order of significance, can be identified as the most important error sources: (i) the considerably large relativistic contributions carrying large uncertainties, (ii) the very slow convergence of the M?ller-Plesset (MP2) correlation energy (with the octuple-ζ basis set, it still contains an error of a few tenth of a kJ/mol), (iii) the slow convergence of the coupled-cluster singles and doubles (CCSD) contribution (it needs a octuple-ζ basis set to converge within 0.1 kJ/mol), and (iv) the relatively large basis set (quadruple-ζ) needed in the calculation of an accurate perturbative quadruples contribution. It is also notable that, for chlorine, the use of a quintuple-ζ basis set for the Hartree-Fock energy, the MP2 correlation energy, and for the CCSD and perturbative triples contributions, which is the usual treatment in almost every high-accuracy model chemistry, resulted in the overestimation of all of these contributions (altogether about by 1.8 kJ/mol). However, this overestimation is accidentally compensated by (i) using an inappropriate, small basis set for the valence electron contribution due to quadruple excitations (~1.2 kJ/mol), (ii) neglecting the effects of core electron contributions due to quadruple excitations (~0.2 kJ/mol), and (iii) neglecting relativistic effects beyond the scalar relativistic treatment (~0.3 kJ/mol). The most reliable theoretical estimate for D(0)((35)Cl(2)) obtained in this study, 239.27 ± 1.30 kJ/mol, differs by only 0.05 kJ/mol from the most accurate experimental result. This study also underpins the effect of relativistic contributions, which precludes current model chemistries to enter the range of sub-kJ/mol accuracy for second-row systems.  相似文献   

20.
Auxiliary basis sets (ABS) specifically matched to the cc‐pwCVnZ‐PP and aug‐cc‐pwCVnZ‐PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y‐Pd at the second‐order Møller‐Plesset perturbation theory level. Calculation of the core‐valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution‐of‐the‐identity component of explicitly correlated calculations is also investigated, where it is shown that i‐type functions are important to produce well‐controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double‐ζ calculations produce results close to conventional quadruple‐ζ, and triple‐ζ is within chemical accuracy of the complete basis set limit. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号