首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ion recognition properties of self-assembled monolayers (SAMs)   总被引:1,自引:0,他引:1  
In the search for new sensors, self-assembled monolayers (SAMs) have gained intensive interest due to their nanometre size, highly-ordered structures, and molecular recognition properties. This article presents an overview of ion recognition at SAM-modified surface/solution interfaces, and brings up to date the most notable examples for the sensing of cations and anions. Sensing is achieved with SAMs containing redox active and inactive receptors using techniques such as fluorescence spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

2.
The past, present, and future of the application of self-assembled monolayers (SAMs) in electroanalytical chemistry is reviewed. SAMs for electroanalytical applications have been introduced in the early 1990s and since then have been exploited for the detection of different species ranging from metal ions to biomolecules and microorganisms. This review describes the different types of monolayers, surfaces on which they have been assembled, the various analytes, which were determined, and the various electrochemical techniques employed. The prospective and perspectives of this topic are discussed.  相似文献   

3.
I Markovich  D Mandler 《The Analyst》2001,126(11):1850-1856
A new approach for designing a voltammetric selective electrode is presented. The approach is based on the formation of a disorganised inert self-assembled monolayer (SAM), in which an amphiphilic molecule is incorporated. The latter serves as the selectivity factor, which extracts the analyte. The purpose of these experiments is to study the parameters that affect the capability of a monolayer to host amphiphiles. As model systems we focused on the incorporation of simple amphiphilic molecules (quaternary alkyl ammonium salts), electroactive amphiphiles (dialkylviologens) and a macrocycle ligand (tetramethylcyclam) into octadecyl silane monolayers formed on indium tin oxide (ITO) and purposely made disorganised alkanethiols on gold. We find that basically, the incorporation of amphiphiles into a hydrophobic inert SAM resembles a reversed stationary phase in liquid chromatography and this configuration can be used for designing selective electrodes.  相似文献   

4.
Using a modified surface forces apparatus, we have simultaneously measured the friction and triboelectrification between both similar and dissimilar molecularly smooth hexadecanethiol-coated metal surfaces on mica substrates. On shearing dissimilar surfaces, the tribocurrent increases dramatically as the load or pressure is increased, with large fluctuations about the mean. Neither charge transfer nor fluctuations are observed when the symmetric surfaces are sheared against each other. We also find that the type of friction, i.e., stick-slip or smooth sliding, the load and friction force, the sliding distance, and recent previous history have additional fine influences on the triboelectrification. Our results suggest that frictional dissipation induces electron-hole formation and charge transfer between two shearing surfaces due to molecular-level roughness and defects and local dielectric constant changes, giving rise to the observed tribocurrents.  相似文献   

5.
This communication discusses the electrochemical assessment of self-assembled monolayers (SAMs) formed via microcontact printing with various concentrations of 1-hexadecanethiol (HDT) ink. At concentrations above 20 mM, the printed SAMs are shown to have very similar qualities to those formed from solution using much longer preparation procedures.  相似文献   

6.
在过去的半个世纪里,由于多巴胺 (DA)在神经传导中的重要作用,引起了分析工作者尤其是电分析工作者的广泛兴趣.  相似文献   

7.
We have investigated the photooxidation of alkanethiolate self-assembled monoalyers (SAMs) adsorbed on GaAs (001) using time-of-flight secondary ion mass spectrometry. Both -CH3- and -COOH-terminated SAMs undergo photoreaction to form sulfonated species upon exposure to UV light from a 500 W Hg arc lamp (lambda = 280-440 nm) in the presence of oxygen. In contrast to SAMs adsorbed on metals, the photooxidation of octadecanethiol adsorbed on GaAs can be fit to two first-order reactions: a fast initial reaction followed by a second slower reaction ( approximately 6 times slower). For SAMs with shorter alkyl chain lengths, the photooxidation process is can be fit to a single first-order reaction. Using the optimal photooxidation time, we also demonstrate that SAMs can be successfully UV photopatterned on GaAs substrates producing sharp, well-defined patterns.  相似文献   

8.
By grafting (aminopropyl)triethoxysilane (APTES) as the buffer layer on poly(ethylene terephthalate) (PET) surface, the SAMs ofoctadecyltrichlorosilane (OTS), phenyltrichlorosilane (PTCS), vinyltrichlorosilane (VTCS), andp-tolyltrichlorosilane (TTCS) were fabricated on the flexible polymer substrate. The properties of SAMs were accurately controlled by adjusting the immersing time of substrates in the solutions and the concentration of the solutions. The SAMs acted as templates, and TiO2 micropattern was successfully deposited on OTS, TTCS, and PTCS SAMs.  相似文献   

9.
Separated domains of 1-dodecanethiolate were fabricated via solution displacement of preformed 1-adamantanethiolate self-assembled monolayers on Au{111}. Subsequently, the 1-adamantanethiolate domains were desorbed selectively, and the substrate was exposed to a 1-octanethiol solution, creating artificially separated self-assembled monolayers of 1-dodecanethiolate and 1-octanethiolate. The molecular order of each lattice type and the apparent height differences imaged with scanning tunneling microscopy and the two distinct cathodic peaks observed with cyclic voltammetry indicated distinct separated domains of each lattice type in the separated self-assembled monolayers. By manipulating the intermolecular interaction strengths of the patterned molecules, we are able to control the structure and properties of the separated self-assembled monolayers via the exploitation of competitive adsorption and the utilization of electrochemical processing, which can be extended to other self-assembly patterning techniques such as microdisplacement printing.  相似文献   

10.
Monolayers of the thiolipopeptide NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-(Myr)Lys(Myr)-OH (III) were formed on gold surfaces by self-assembly, mixed with a lateral spacer of the same peptide composition, NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-Lys-OH (I). Different mixing ratios were employed ranging from 0.1 to 1, corresponding to 10-100% thiolipopeptide. These self-assembled monolayers (SAMs) were then exposed to a suspension of liposomes with the aim of forming lipid bilayers as a function of the mixing ratio. A clear optimum with respect to homogeneity and electrical properties of the membranes was obtained in the middle region (0.5) of mixing ratio, as revealed by surface plasmon resonance spectroscopy, impedance spectroscopy, and fluorescence microscopy. The combination of these methods was shown to be a powerful tool, although a true lipid bilayer was not obtained. Instead, vesicle adsorption was shown to be the predominant process, and FRAP (fluorescence recovery after photobleaching) measurements showed that the films were not fluid on the micrometer length scale.  相似文献   

11.
12.
<正>A mixed self-assembled monolayers(SAMs) of thioctic acid(T-COOH) and thioctic acid amide(T-NH_2) were used to immobilize tyrosinase for fabricating biosensor.The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate.The biosensor exhibited a fast response and high sensitivity for sensing substrate.  相似文献   

13.
Self-assembled monolayers (SAMs) of bis-thioctic ester derivatives of oligoethylene glycols were prepared. When the number of (-CH2-CH2-O-)n units in these podands was either five or six, the corresponding SAMs showed ion binding properties and selectivities similar to those exhibited by 15-crown-5 or 18-crown-6 in aqueous solution, respectively. Impedance data for the SAMs as a function of metal ion concentrations were fitted by using a Langmuir isotherm to determine the association constants (Ka) with the different ions. The SAM derived from the n = 5 compound is selective for Na+ while that with n = 6 is selective for K+. Results presented here confirm the formation of ion recognition domains during self-assembly of acyclic polyethylene glycol derivatives on gold surfaces; this suggests that surface-confined pseudocrown ether structures are formed.  相似文献   

14.
Peptide-modified electrode surfaces have been shown to have excellent recognition properties for metal ions. An efficient method of screening a potential peptide for its selectivity for a given metal would involve the synthesis of the peptide directly on the electrode surface. This paper outlines a procedure in which the tripeptide Gly-Gly-His was synthesized one amino acid at a time on a gold surface modified with a self-assembled monolayer of the mixed alkanethiolates 3-mercaptopropionic acid (MPA) and 3-mercaptopropane (MP). Electrochemistry and high-resolution mass spectrometry were used to elucidate the structure of the adsorbed species and follow the synthesis. The amino acids can be attached only to MPA, but the presence of a diluting unreactive molecule of MP reduces steric crowding about the reaction center. The maximum coverage of synthesized tripeptide occurs at a ratio of MPA/MP of 1:1.  相似文献   

15.
Self-assembled monolayers (SAMs) of a mu 3-eta 2:eta 2:eta 2-C60 triosmium cluster complex Os3(CO)8(CN(CH2)3Si(OEt)3)(mu 3-eta 2:eta 2:eta 2-C60) (2) on ITO or Au surface exhibit ideal, well-defined electrochemical responses and remarkable electrochemical stability being reducible up to tetranionic species in their cyclic voltammograms.  相似文献   

16.
Mixed dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) monolayers have been deposited on mica using Langmuir-Blodgett technique, as a model system for biomembranes. Nanometer-scale surface physical properties were quantitatively characterized with the gradual temperature change using the atomic force microscope. At 25 degrees C, tapping mode imaging revealed the clear phase-separation in the form of microscopic DPPC domain embedded in a DOPC matrix and the obvious step height between the higher DPPC phase and the lower DOPC phase. Surface force measurement made at 25 degrees C in contact mode showed significant contrasts in deformation elasticity, adhesion, and jump-to-surface. These physical property differences were kept below 40 degrees C, while they almost disappeared over 40 degrees C. In addition, the reversibility of the properties for the temperature change was also found.  相似文献   

17.
Because the active remodeling of biointerfaces is a paramount feature of nature, it is very likely that future, advanced biomaterials will be required to mimic at least certain aspects of the dynamic properties of natural interfaces. This need has fueled a quest for model surfaces that can undergo reversible switching upon application of external stimuli. Herein, we report the synthesis and characterization of a model system for studying reversibly switching surfaces based on low-density monolayers of mercaptohexadecanoic acid and mercaptoundecanoic acid. These monolayers were assembled on both gold and silver electrodes. When conducting electrochemical impedance spectroscopy under physiological conditions, these monolayers exhibit significant changes in their electrochemical barrier properties upon application of electrical DC potentials below +400 mV with respect to a standard calomel electrode. We further found the impedance switching to be reversible under physiological conditions. Moreover, the impedance can be fine-tuned by changing the magnitude of the applied electrical potential. Before and during impedance switching at pH 7.4 in aqueous buffer solutions, the low-density monolayers showed good stability according to grazing angle infrared spectroscopy data. We anticipate low-density monolayers to be potentially useful model surfaces when designing active biointerfaces for cell-based studies or rechargeable biosensors.  相似文献   

18.
本文采用共吸附法制备了由戊硫醇(PT),癸硫醇(DT)和十六烷基硫醇(HDT)组成的三元混合膜,通过循环伏安,X-射线光电子能谱,扫描隧道显微镜(STM)和导电原子力对其结构及性质进行了表征。研究表明硫醇分子通过Au-S键在金电极上形成了一层致密的单分子膜,组装膜表面组成与其在组装液中的摩尔浓度有关。混合膜中各组分形成独立的相区,具有不同的电子传递能力。该研究为未来纳米器件的开发提供更多样化的表面以及更加详实的理论依据。  相似文献   

19.
Assemblies of magnetic nanoparticles (NPs) are intensively studied due to their high potential applications in spintronic, magnetic and magneto-electronic. The fine control over NP density, interdistance, and spatial arrangement onto substrates is of key importance to govern the magnetic properties through dipolar interactions. In this study, magnetic iron oxide NPs have been assembled on surfaces patterned with self-assembled monolayers (SAMs) of mixed organic molecules. The modification of the molar ratio between coadsorbed 11-mercaptoundecanoic acid (MUA) and mercaptododecane (MDD) on gold substrates is shown to control the size of NPs domains and thus to modulate the characteristic magnetic properties of the assemblies. Moreover, NPs can be used to indirectly probe the structure of SAMs in domains at the nanometer scale.  相似文献   

20.
We have synthesised novel oligo(ethylene glycol), CF3-terminated switching self-assembled monolayers, which allow the force experienced by a hydrophobic object to be controlled via the ionic strength of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号