首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.  相似文献   

2.
This article presents a study on screening of microalgal strains from the Peking University Algae Collection and heterotrophic cultivation for biodiesel production of a selected microalgal strain. Among 89 strains, only five were capable of growing under heterotrophic conditions in liquid cultures and Chlorella sp. PKUAC 102 was found the best for the production of heterotrophic algal biodiesel. Composition of the growth medium was optimised using response surface methodology and optimised growth conditions were successfully used for cultivation of the strain in a fermentor. Conversion of algal lipids to fatty acid methyl esters (FAMEs) showed that the lipid profile of the heterotrophically cultivated Chlorella sp. PKUAC 102 contains fatty acids suitable for biodiesel production.  相似文献   

3.
This study evaluates the potential for using different effluents for simultaneous H2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H2 was produced from parboiled rice wastewater (23.9?mL g?1 chemical oxygen demand [COD]) and vinasse (20.8?mL g?1 COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3?mL g?1 COD), followed by parboiled rice wastewater (115.5?mL g?1 COD) and glycerol (180.1?mL g?1 COD). The maximum amount of CH4 was observed for vinasse (255.4?mL g?1 COD). The total energy recovery from vinasse (10.4?kJ g?1 COD) corresponded to the maximum COD reduction (74.7?%), followed by glycerol (70.38?%, 7.20?kJ g?1 COD), parboiled rice wastewater (63.91?%, 4.92?kJ g?1 COD), and sewage (51.11?%, 1.85?kJ g?1 COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H2 and CH4.  相似文献   

4.
Anaerobic digestion (AD) is a microbially-driven process enabling energy production. Microorganisms are the core of anaerobic digesters and play an important role in the succession of hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes. The diversity of participating microbial communities can provide new information on digester performance for biomass valorization and biofuel production. In this study anaerobic systems were used, operating under mesophilic conditions that realized biodegradation processes of waste wheat straw pretreated with NaOH—a renewable source for hydrogen and methane production. These processes could be managed and optimized for hydrogen and methane separately but combining them in a two-stage system can lead to higher yields and a positive energy balance. The aim of the study was to depict a process of biohydrogen production from lignocellulosic waste followed by a second one leading to the production of biomethane. Archaeal and bacterial consortia in a two-stage system operating with wheat straw were identified for the first time and the role of the most important representatives was elucidated. The mixed cultures were identified by the molecular-biological methods of metagenomics. The results showed that biohydrogen generation is most probably due to the presence of Proteiniphilum saccharofermentans, which was 28.2% to 45.4% of the microbial community in the first and the second bioreactor, respectively. Archaeal representatives belonging to Methanobacterium formicicum (0.71% of the community), Methanosarcina spelaei (0.03%), Methanothrix soehngenii (0.012%), and Methanobacterium beijingense (0.01%) were proven in the methane-generating reactor. The correlation between substrate degradation and biogas accumulation was calculated, together with the profile of fatty acids as intermediates produced during the processes. The hydrogen concentration in the biogas reached 14.43%, and the Methane concentration was 69%. Calculations of the energy yield during the two-stage process showed 1195.89 kWh·t−1 compared to a 361.62 kWh·t−1 cumulative yield of energy carrier for a one-stage process.  相似文献   

5.
In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.  相似文献   

6.
Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates.  相似文献   

7.
In this study, the biomass and exopolysaccharides (EPS) production in co-cultures of microalgae/cyanobacteria and macromycetes was evaluated as a technology for producing new polysaccharides for medical and/or industrial application. Based on biomass and EPS productivity of monocultures, two algae and two fungi were selected and cultured in different co-culture arrangements. The hydrosoluble EPS fractions from mono- and co-cultures were characterized by 13C NMR spectroscopy and gas chromatography coupled to mass spectrometry and compared. It was found that co-cultures resulted in the production of an EPS different from those produced by monocultures, showing fungal predominance with microalgal/cyanobacterial traces. Co-cultures conditions were screened (temperature, agitation speed, fungal and microalgae inoculation rate, initial pH, illumination rate, and glucose concentration) in order to achieve maximum biomass and EPS production, resulting in an increase of 33 and 61% in exopolysaccharides and biomass productions, respectively (patent pending).  相似文献   

8.
针对动物源性食品及饲料中氟苯尼考的残留问题,通过抗原制备、动物免疫和细胞融合筛选,成功得到可高特异性识别氟苯尼考的单克隆抗体,并建立了氟苯尼考的间接竞争酶联免疫分析(icELISA)方法.经单因素实验优化策略,确定最佳反应条件为:包被抗原质量浓度0.05μg/mL,抗体质量浓度为0.1μg/mL,最佳药物、抗体和二抗稀...  相似文献   

9.
A practically useful coupling reaction between aromatic halides and redox-active esters was realized by nickel catalysis through the use of a packed zinc bed column in continuous flow. Multiple reuse of the column showed a negligible decrease in efficiency, affording high space/time yields. A wide range of substrates, including a number of heteroaryl halides and polyfunctional materials were coupled in generally good yields. Longer-time and larger-scale experiments further demonstrates the robustness of the system.  相似文献   

10.
Applied Biochemistry and Biotechnology - A 28-day feeding experiment with formulated feed using docosahexaenoic acid (DHA)-rich whole cells of freeze-dried marine microalgae Schizochytrium sp. to...  相似文献   

11.
This study is concerned with a novel mass microalgae production system which, for the first time, uses “centrate”, a concentrated wastewater stream, to produce microalgal biomass for energy production. Centrate contains a high level of nutrients that support algal growth. The objective of this study was to investigate the growth characteristics of a locally isolated microalgae strain Chlorella sp. in centrate and its ability to remove nutrients from centrate. A pilot-scale photobioreactor (PBR) was constructed at a local wastewater treatment plant. The system was tested under different harvesting rates and exogenous CO2 levels with the local strain of Chlorella sp. Under low light conditions (25 μmol·m-2s-1) the system can produce 34.6 and 17.7 g·m-2day-1 biomass in terms of total suspended solids and volatile suspended solids, respectively. At a one fourth harvesting rate, reduction of chemical oxygen demand, total Kjeldahl nitrogen, and soluble total phosphorus were 70%, 61%, and 61%, respectively. The addition of CO2 to the system did not exhibit a positive effect on biomass productivity or nutrient removal in centrate which is an organic carbon rich medium. The unique PBR system is highly scalable and provides a great opportunity for biomass production coupled with wastewater treatment.  相似文献   

12.
An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m?3 day?1), which were varied according to the influent concentration (3,600 and 5,400 mg COD L?1) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m?3 day?1, the highest daily production rate (0.139 mol H2?day?1) was achieved at AVOL of 18.0 kg COD m?3 day?1, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H2?kg SUC?1, respectively, at AVOL of 13.5 kg COD m?3 day?1. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate.  相似文献   

13.
An environmentally friendly method for extracting sulfonamides(SAs) residues from animal feed was described and applied. The method used online microwave-assisted steam extraction coupled with solid phase extraction(MASE-SPE), which was followed by the analysis using high performance liquid chromatography-mass spectrometry(HPLC-MS/MS). The SAs residues were extracted successively with water steam under microwave irradiation, and thus directly introduced into an SPE column containing cation-exchange resin. The SAs were then eluted with methanol-ammonia(90:10, volume ratio) from the SPE column and followed by HPLC-MS/MS. The limits of detection(LODs) for the analytes ranged from 0.24 ng/g to 0.49 ng/g. The limits of quantification(LOQs) ranged from 0.82 ng/g to 1.63 ng/g. Average recoveries of SAs were 76.3%-92.1%. The developed method was a reliable and environmentally friendly alternative to previous methods with respect to time, solvent and labor consumption for the analysis of SAs in animal foodstuffs.  相似文献   

14.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

15.
In this study, Scenedesmus sp. FSP3 was cultured using a two-stage culture strategy for CO2 fixation and lutein production. During the first stage, propylene carbonate was added to the medium, with 5% CO2 introduced to promote the rapid growth and CO2 fixation of the microalgae. During the second stage of cultivation, a NaCl concentration of 156 mmol L−1 and a light intensity of 160 μmol m−2 s−1 were used to stimulate the accumulation of lutein in the microalgal cells. By using this culture method, high lutein production and CO2 fixation were simultaneously achieved. The biomass productivity and carbon fixation rate of Scenedesmus sp. FSP3 reached 0.58 g L−1 d−1 and 1.09 g L−1 d−1, with a lutein content and yield as high as 6.45 mg g−1 and 2.30 mg L−1 d−1, respectively. The results reveal a commercially feasible way to integrate microalgal lutein production with CO2 fixation processes.  相似文献   

16.
Applied Biochemistry and Biotechnology - Fusarium equiseti UMN-1 fungal strain isolated from soybean is selected as a potential oleaginous fungal strain for biodiesel generation. It possesses...  相似文献   

17.
采用温和的固相反应法合成了具有四方相结构的铽一铕共掺杂的硅酸铝钠(NaAlSiO_4:Tb~(3+),Eu~(3+))发光材料.利用粉末X射线衍射(XRD)、荧光光谱(PL)、时间分辨光谱(TRPL)以及荧光寿命等手段对合成的样品进行表征.研究结果表明:通过改变NaAlSiO_4:Tb~(3+),Eu~(3+)中Eu~(3+)离子的掺杂浓度,可实现其绿光及红光发射的调控;由于Tb~(3+),Eu~(3+)离子间的有效能量传递,Tb~(3+)离子的共掺杂可显著增强该基质中Eu~(3+)离子的发光性能;该能量传递现象可由TRPL光谱等手段进行证实,根据荧光寿命的数值计算可知,从Tb3~(3+)向Eu~(3+)离子的能量传递效率高达95%.  相似文献   

18.
Switchgrass earned its place globally as a significant energy crop by possessing essential properties such as being able to control erosion, low cost of production, biomass richness, and appeal for biofuel production. In this study, the impact of a Ca(OH)2-assisted thermal pretreatment process on the switchgrass variety Shawnee for methane fuel production was investigated. The Ca(OH)2-assisted thermal pretreatment process was optimized to enhance the methane production potential of switchgrass. Solid loading (3–7%), Ca(OH)2 concentration (0–2%), reaction temperature (50–100 °C), and reaction time (6–16 h) were selected as independent variables for the optimization. Methane production was obtained as 248.7 mL CH4 gVS−1 under the optimized pretreatment conditions. Specifically, a reaction temperature of 100 °C, a reaction time of 6 h, 0% Ca(OH)2, and 3% solid loading. Compared to raw switchgrass, methane production was enhanced by 14.5%. Additionally, the changes in surface properties and bond structure, along with the kinetic parameters from first order, cone, reaction curve, and modified Gompertz modeling revealed the importance of optimization.  相似文献   

19.
In this study, we present a simple and eco-friendly method for extracellular biosynthesis of gold nanoparticles by Streptomyces sp. ERI-3 cell-free supernatant. The research was also aimed to evaluate the effects of different reaction parameters including incubation temperature, reaction time, HAuCl4 concentration and pH on gold nanoparticles production. The UV?CVis spectroscopy was used to monitor the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized with XRD, TEM, and SEM. The average particle size ranged from 10 to 30?nm with spherical shape at optimum conditions.  相似文献   

20.
Photoelectron spectra of two species, Al3O3(H2O)2- and Al3O3(CH3OH)2-, that are produced by the addition of two water or methanol molecules to Al3O3- are interpreted with density-functional geometry optimizations and electron propagator calculations of vertical electron detachment energies. In both cases, there is only one isomer that is responsible for the observed spectral features. A high barrier to the addition of a second molecule may impede the formation of Al3O3N2H6- clusters in an analogous experiment with NH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号