首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.  相似文献   

2.
We investigate numerically the Self Organized Criticality (SOC) properties of the dissipative Olami-Feder-Christensen model on small-world and scale-free networks. We find that the small-world OFC model exhibits self-organized criticality. Indeed, in this case we observe power law behavior of earthquakes size distribution with finite size scaling for the cut-off region. In the scale-free OFC model, instead, the strength of disorder hinders synchronization and does not allow to reach a critical state.  相似文献   

3.
A modified Olami-Feder-Christensen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-free networks is investigated. We find that our model displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent τ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.  相似文献   

4.
Epidemic spreading in scale-free networks   总被引:63,自引:0,他引:63  
The Internet has a very complex connectivity recently modeled by the class of scale-free networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from computer virus infections and find the average lifetime and persistence of viral strains on the Internet. We define a dynamical model for the spreading of infections on scale-free networks, finding the absence of an epidemic threshold and its associated critical behavior. This new epidemiological framework rationalizes data of computer viruses and could help in the understanding of other spreading phenomena on communication and social networks.  相似文献   

5.
Theory of rumour spreading in complex social networks   总被引:1,自引:0,他引:1  
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.  相似文献   

6.
Core-periphery structure is a typical meso-scale structure in networks. Previous studies on core-periphery structure mainly focus on the improvement of detection methods, while the research on the impact of core-periphery structure on cascading failures in interdependent networks is still missing. Therefore, we investigate the cascading failures of interdependent scale-free networks with different core-periphery structures and coupling preferences in the paper. First, we introduce an evaluation index to calculate the goodness of core-periphery structure. Second, we propose a new scale-free network evolution model, which can generate tunable core-periphery structures, and its degree distribution is analyzed mathematically. Finally, based on a degree-load-based cascading failure model, we mainly investigate the impact of goodness of core-periphery structure on cascading failures in both symmetrical and asymmetrical interdependent networks. Through numerical simulations, we find that with the same average degree, the networks with weak core-periphery structure will be more robust, while the initial load on node will influence the improvement of robustness. In addition, we also find that the inter-similarity coupling performs better than random coupling. These findings may be helpful for building resilient interdependent networks.  相似文献   

7.
We propose a geometric growth model for weighted scale-free networks, which is controlled by two tunable parameters. We derive exactly the main characteristics of the networks, which are partially determined by the parameters. Analytical results indicate that the resulting networks have power-law distributions of degree, strength, weight and betweenness, a scale-free behavior for degree correlations, logarithmic small average path length and diameter with network size. The obtained properties are in agreement with empirical data observed in many real-life networks, which shows that the presented model may provide valuable insight into the real systems.  相似文献   

8.
Here we analyze the topology of the network formed by the minima and transition states on the potential energy landscape of small clusters. We find that this network has both a small-world and scale-free character. In contrast to other scale-free networks, where the topology results from the dynamics of the network growth, the potential energy landscape is a static entity. Therefore, a fundamentally different organizing principle underlies this behavior: The potential energy landscape is highly heterogeneous with the low-energy minima having large basins of attraction and acting as the highly connected hubs in the network.  相似文献   

9.
Differently from theoretical scale-free networks, most real networks present multi-scale behavior, with nodes structured in different types of functional groups and communities. While the majority of approaches for classification of nodes in a complex network has relied on local measurements of the topology/connectivity around each node, valuable information about node functionality can be obtained by concentric (or hierarchical) measurements. This paper extends previous methodologies based on concentric measurements, by studying the possibility of using agglomerative clustering methods, in order to obtain a set of functional groups of nodes, considering particular institutional collaboration network nodes, including various known communities (departments of the University of São Paulo). Among the interesting obtained findings, we emphasize the scale-free nature of the network obtained, as well as identification of different patterns of authorship emerging from different areas (e.g. human and exact sciences). Another interesting result concerns the relatively uniform distribution of hubs along concentric levels, contrariwise to the non-uniform pattern found in theoretical scale-free networks such as the BA model.  相似文献   

10.
We use multifractal detrended fluctuation analysis(MF-DFA) method to investigate the multifractal behavior of the interevent time series in a modified Olami-Feder-Christensen(OFC) earthquake model on assortative scale-free networks.We determine generalized Hurst exponent and singularity spectrum and find that these fluctuations have multifractal nature.Comparing the MF-DFA results for the original interevent time series with those for shuffled and surrogate series,we conclude that the origin of multifractality is due to both the broadness of probability density function and long-range correlation.  相似文献   

11.
We study the transport properties of model networks such as scale-free and Erd?s-Rényi networks as well as a real network. We consider few possibilities for the trnasport problem. We start by studying the conductance G between two arbitrarily chosen nodes where each link has the same unit resistance. Our theoretical analysis for scale-free networks predicts a broad range of values of G, with a power-law tail distribution $\Phi_{\rm SF}(G)\sim G^{-g_G}$ , where gG=2λ-1, and λ is the decay exponent for the scale-free network degree distribution. The power-law tail in ΦSF(G) leads to large values of G, thereby significantly improving the transport in scale-free networks, compared to Erd?s-Rényi networks where the tail of the conductivity distribution decays exponentially. We develop a simple physical picture of the transport to account for the results. The other model for transport is the max-flow model, where conductance is defined as the number of link-independent paths between the two nodes, and find that a similar picture holds. The effects of distance on the value of conductance are considered for both models, and some differences emerge. We then extend our study to the case of multiple sources ans sinks, where the transport is defined between two groups of nodes. We find a fundamental difference between the two forms of flow when considering the quality of the transport with respect to the number of sources, and find an optimal number of sources, or users, for the max-flow case. A qualitative (and partially quantitative) explanation is also given.  相似文献   

12.
We study geographical effects on the spread of diseases in lattice-embedded scale-free networks. The geographical structure is represented by the connecting probability of two nodes that is related to the Euclidean distance between them in the lattice. By studying the standard susceptible-infected model, we found that the geographical structure has great influences on the temporal behavior of epidemic outbreaks and the propagation in the underlying network: the more geographically constrained the network is, the more smoothly the epidemic spreads, which is different from the clearly hierarchical dynamics that the infection pervades the networks in a progressive cascade across smaller-degree classes in Barabási–Albert scale-free networks.  相似文献   

13.
郭进利  郭曌华  刘雪娇 《中国物理 B》2011,20(11):118902-118902
This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.  相似文献   

14.
宋玉蓉  蒋国平 《物理学报》2010,59(2):705-711
在考虑节点抗攻击能力存在差异情形下,研究了恶意软件在无尺度网络中的传播行为.基于元胞自动机理论,建立了节点具有攻击差异的恶意软件传播模型.通过定义脆弱性函数,以描述不同度节点的抗攻击差异,使得模型更具普遍性.研究了不同形式的脆弱性函数对恶意软件在无尺度网络中的传播临界值和时间演化的影响.研究表明,节点抗攻击能力的差异对传播行为会产生重要影响,如导致传播临界值改变、传播速度减缓.研究指出,脆弱性函数是网络选择适合的免疫策略的重要依据.  相似文献   

15.
In complex systems, responses to small perturbations are too diverse to definitely predict how much they would be, and then such diverse responses can be predicted in a probabilistic way. Here we study such a problem in scale-free networks, for example, the diameter changes by the deletion of a single vertex for various in silico and real-world scale-free networks. We find that the diameter changes are indeed diverse and their distribution exhibits an algebraic decay with an exponent zeta asymptotically. Interestingly, the exponent zeta is robust as zeta approximately 2.2(1) for most scale-free networks and insensitive to the degree exponents gamma as long as 2相似文献   

16.
手机短信息传播过程和短信息寿命研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李明杰  吴晔  刘维清  肖井华 《物理学报》2009,58(8):5251-5258
比较了短信息在无标度网络、小世界网络和实际的短信息网络三种网络中的传播过程,寻找影响短信息传播的因素.研究发现,网络拓扑结构和手机用户的转发短信行为均会影响短信息传播过程.在无标度网络中短信息传播速率快于小世界网络和实际的短信息网络,而无标度网络的短信息寿命较小世界网络和实际的短信息网络短;网络中手机用户的转发短信息行为明显影响短信息的传播过程.同时还发现短信息寿命与网络直径有关. 关键词: 复杂网络 短信息 信息传播 人类行为  相似文献   

17.
吴治海  方华京 《中国物理快报》2008,25(10):3822-3825
We propose a new concept, two-step degree. Defining it as the capacity of a node of complex networks, we establish a novel capacity-load model of cascading failures of complex networks where the capacity of nodes decreases during the process of cascading failures. For scale-free networks, we find that the average two-step degree increases with the increase of the heterogeneity of the degree distribution, showing that the average two- step degree can be used for measuring the heterogeneity of the degree distribution of complex networks. In addition, under the condition that the average degree of a node is given, we can design a scale-free network with the optimal robustness to random failures by maximizing the average two-step degree.  相似文献   

18.
In this work, we study the effects of embedding a system of non-linear phase oscillators in a two-dimensional scale-free lattice. In order to analyze the effects of the embedding, we consider two different topologies. On the one hand, we consider a scale-free complex network where no constraint on the length of the links is taken into account. On the other hand, we use a method recently introduced for embedding scale-free networks in regular Euclidean lattices. In this case, the embedding is driven by a natural constraint of minimization of the total length of the links in the system. We analyze and compare the synchronization properties of a system of non-linear Kuramoto phase oscillators, when interactions between the oscillators take place in these networks. First, we analyze the behavior of the Kuramoto order parameter and show that the onset of synchronization is lower for non-constrained lattices. Then, we consider the behavior of the mean frequency of the oscillators as a function of the natural frequency for the two different networks and also for different values of the scale-free exponent. We show that, in contrast to non-embedded lattices that present a mean-field-like behavior characterized by the presence of a single cluster of synchronized oscillators, in embedded lattices the presence of a diversity of synchronized clusters at different mean frequencies can be observed. Finally, by considering the behavior of the mean frequency as a function of the degree, we study the role of hubs in the synchronization properties of the system.  相似文献   

19.
According to the dynamic characteristics of the cascading propagation, we introduce a mitigation mechanism and propose four mitigation methods on four types of nodes. By the normalized average avalanche size and a new measure, we demonstrate the efficiencies of the mitigation strategies on enhancing the robustness of scale-free networks against cascading failures and give the order of the effectiveness of the mitigation strategies. Surprisingly, we find that only adopting once mitigation mechanism on a small part of the overload nodes can dramatically improve the robustness of scale-free networks. In addition, we also show by numerical simulations that the optimal mitigation method strongly depends on the total capacities of all nodes in a network and the distribution of the load in the cascading model. Therefore, according to the protection strength for scale-free networks, by the distribution of the load and the protection price of networks, we can reasonably select how many nodes and which mitigation method to efficiently protect scale-free networks at the lower price. These findings may be very useful for avoiding various cascading-failure-induced disasters in the real world and for leading to insights into the mitigation of cascading failures.  相似文献   

20.
A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to characterize the correlation between the structural and the dynamical properties and investigate the impacts of the correlation on the synchronization transition in the Kuramoto model on scale-free networks. We find that the synchronization transition may be either a continuous one or a discontinuous one depending on the correlation and that strong correlation always postpones both the transitions from the incoherent state to a synchronous one and the transition from a synchronous state to the incoherent one. We find that the dependence of the synchronization transition on the correlation is also valid for other types of distributions of natural frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号