首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cu3Se2 nanofilms were synthesized with underpotential deposition based electrochemical codeposition technique for the first time in the literature. The electrochemical behaviors of copper and selenium were investigated in 0.1 M H2SO4 on Au electrode. The effects of concentration and scan rate on the electrochemical behavior of selenium were studied. The electrochemical behaviors in underpotential deposition and bulk regions of the Cu-Se system were investigated in acidic solution by cyclic voltammetry and electrolysis techniques. X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, and ultraviolet and visible absorption spectroscopy techniques were used for characterization of synthesized films. According to the X-ray photoelectron spectroscopy spectrum, Cu/Se ratio was determined to be approximately 3/2. Copper selenide nanofilms are two phases and polycrystalline according to X-ray diffraction. The films mainly formed tetragonal Cu3Se2 (umangite mineral structure) structure and the particle size was approximately 45.95 nm. Scanning electron microscopy images showed that Cu3Se2 nanofilms consisted of uniform, nano-sizes and two-dimensional. It was found through AFM that the surface roughness of the film was 6.173 nm, with a mean particle size of around 50 nm. Depending on the deposition time, the band gaps of the Cu3Se2 films were in the range of 2.86–3.20 eV. Three characteristic vibrational modes belonging to Cu3Se2 nanofilms were recorded in the Raman spectrum.  相似文献   

2.
A BDD-BDD system was developed in the simultaneous conversion of CO2 and wastewater purification in one electrochemical cell.  相似文献   

3.
Interest in carbon nanotubes (CNT) has grown at a very rapid rate in the last decade. Their interesting physical and chemical properties open attractive possibilities in many application areas. These properties depend on the process conditions during synthesis and on subsequent purification steps. Recent studies have demonstrated that CNT can promote the electron transfer of biomolecules. These exceptional properties make them attractive for use in electrochemical biosensors. Multi walled nanotubes have been synthesized by the Chemical Vapor Deposition (CVD) method using methane as a carbon source and Ni–Al2O3–SiO2 as the catalyst. The influence of the variation of certain reaction parameters such as feed gas composition, catalyst mass, temperature and reaction time in the yield of the CVD process has been established. In addition, the structural and chemical characteristics of the CNTs have been studied and a purification process to eliminate the catalyst and amorphous carbon has been developed that involves a gaseous oxidative process and acid treatment. The efficiency of the purification step has been determined by analytical techniques. Atomic force microscopy, Raman scattering, thermogravimetric analysis, inductively coupled plasma atomic spectroscopy are the characterization techniques employed in this work.  相似文献   

4.
In this article, a highly sensitive electrochemical sensor is introduced for direct electro-oxidation of bisphenol A (BPA). The novel nanocomposite was prepared based on multi-walled carbon nanotube/thiol functionalised magnetic nanoparticles (Fe3O4-SH) as an immobilisation platform and gold nanoparticles (AuNPs) as an amplifying electrochemical signal. The chemisorbed AuNPs exhibited excellent electrochemical activity for the detection of BPA. Some analysing techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive x-ray diffraction exposed the formation of nanocomposite. Under optimum conditions (pH 9), the sensor showed a linear range between 0.002–240 μM, with high sensitivity (0.25 μA μM?1) along with low detection limit (6.73 × 10?10 M). Moreover, nanocomposites could efficiently decrease the effect of interfering agents and remarkably enhance the utility of sensor at detection of BPA in some real samples.  相似文献   

5.
Phase pure olivine type V5+ doped and un-doped LiCoPO4 (LiCo1?xVxPO4 & LiCoP1?xVxO4; x = 0.02, 0.04 and 0.06) were synthesized by combustion method. Compound formation temperature and thermal stability of the materials were studied through thermal analysis. X-ray diffraction pattern shows the prepared material possesses an orthorhombic structure with Pnmb space group. Further the functional group and vibrational analysis were carried out by Fourier Transform Infra-red and Raman spectroscopy techniques. The Scanning Electron Micrographs depicts the irregular shaped morphology with particle agglomeration of the pristine and doped LiCoPO4 materials. The structural variation on addition of dopant on both sites Co2+ & P5+ were revealed from XPS spectra. The electrochemical aspects of these materials were investigated by cyclic voltammetry studies in conjunction with electrochemical impedance spectroscopy and chronoamperommetry measurements to understand the redox reactions and their capacity contribution at higher voltages. The EIS analysis shows that the conductance value was decreased for the vanadium doped samples for both the Co site and P site, which infers that the V5+ addition doesn’t make any significant enhancement in the electrochemical performance of the LiCoPO4.  相似文献   

6.
We report on the development of an electrochemical sensor based on electrodepositing zinc oxide on multiwalled carbon nanotube-modified glassy carbon electrode for the detection of caffeine in pharmaceutical wastewater effluents. The measurements were carried out using cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperometry and differential pulse voltammetry (DPV). DPV measurements showed a linear relationship between oxidation peak current and concentration of caffeine in 0.1 M HClO4 (pH 1.0) over the concentration range 0.00388–4.85 mg/L and a detection limit of 0.00194 mg/L. The diffusion coefficient and Langmuir adsorption constant for caffeine were calculated to be 3.25 × 10?6 cm2 s?1 and 1.10 × 103 M?1, respectively. The sensor showed satisfactory results when applied to the detection of caffeine in wastewater effluents.  相似文献   

7.
The influence of hydrogen phosphate (HPO42−) and molybdate ions (MoO42−) on the behavior of tin corrosion in 0.2 M maleic acid was compared using experimental and theoretical techniques. The experimental studies consisted of the electrochemical investigations (potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS)), along with the surface analytical techniques (SEM and EDX). Additionally, the theoretical analysis (the chemical quantum computations at MP4/SDD level of theory in the aqueous phase), was conducted. The experimental outcomes illustrated that the inhibition efficiency (η%) increases with the concentration of the inhibitors, reaching 88 % and 81 % at 2×10−2 M concentration of MoO42− and HPO42−, respectively. The potentiodynamic polarization curves revealed that HPO42− performance is a cathodic-type inhibitor, while MoO42− shows a mixed-type behavior. The increase in temperature decreased the η% values of both inhibitors. Based on surface analysis and thermodynamic study, the presence of the two inhibitors formed protective films on the tin surface through a physisorption mechanism. The chemical quantum computations using the complete fourth-order Møller Plesset perturbation theory (MP4 with SDD basis) method results outlined the favorable affinity of the investigated inorganic inhibitors to interact with the tin surface, which interprets the well-observed inhibition efficiencies.  相似文献   

8.
To improve the service life of SnO2?Sb electrodes in degradation of refractory wastewater, we report anodic information of tin oxide antimony on top of Nb?TiO2 nanotubes (Nb?Ti/Nb?TiO2?NTs/ATONPs) prepared through screen‐printing. It was found that the Nb?Ti/Nb?TiO2?NTs/ATONPs anodes presented a significantly enhanced in electro‐catalytic oxidation performance (in Acid Red 73) compared to titanium‐based tin antimony electrodes (Ti/ATONPs). Additionally, the electrochemical properties and the stability were further studied by the electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV), chronoamperometry (CA) measurements and accelerated life test, respectively. These results indicated that Nb?TiO2?NTs/ATONPs anode possessed Nb?TiO2 nanotubes which exhibited a higher oxygen evolution potential (2.24 V vs. Ag/AgCl), as well as a better wettability, a larger current at constant potential and 2.1 times longer lifetime than the conventional Ti/ATONPs anode.  相似文献   

9.
Most of research has been carried out for the development of electrocatalysts for hydrogen evolution reaction (HER), which are high activity and low cost. In this study, a practical, usable, highly active, cheap, and none noble metal catalyst was developed for HER. To this end, tungsten disulfide supported on silicon (WS2/Si) and on silicon nanoparticles (WS2/nano-Si) were prepared. To increase the catalytic activity of WS2/nano-Si, chemical etching was used to prepare WS2/nano-Si etched. The synthesized electrocatalysts were characterized using Fortier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction methods. To evaluate the electrochemical attributes of WS2/Si and WS2/n-Si before and after chemical etching, electrochemical impedance spectroscopy, linear sweep, and cyclic voltammetry were used. The electrochemical measurements indicated an intense activity of the WS2/nano-Si/etched, through a high density of the current and low overpotential for HER, with a small overpotential of 0.14 V, Tafel slopes as small as 45 mV dec?1, and large cathodic currents. These results show that through etching process of silicon in HF the quantities of the active sites have been changed and increased considerably.  相似文献   

10.
The electrochemical synthesis of poly(4-aminomethyl-5-hydroxymethyl-2-methyl pyridine-3-ol) on steel and copper electrodes was achieved in both sulfuric acid and oxalic acid by cyclic voltammetry technique. Characterization of the polymer films were achieved by Fourier transforms infrared spectroscopy technique (FTIR) and scanning electron microscope (SEM). Corrosion performance of coatings was investigated in 0.1 M H2SO4 by potentiodynamic polarization and electrochemical impedance (EIS) spectroscopy techniques.  相似文献   

11.
The inhibitory action of an extract of Hemidesmus indicus leaves as a potential corrosion inhibitor for steel in H2SO4 solutions was examined using conventional mass loss, gasometric techniques, electrochemical polarisations and electrochemical impedance spectroscopy. The results revealed that the extract of Hemidesmus indicus leaves performed well as an inhibitor for the corrosion of the metal employed in an accelerating medium. The inhibition efficiencies for all the experimental techniques employed increased with increasing the concentration of the plant extract but decreased with a rise in temperature. Both the cathodic hydrogen evolution and the anodic dissolution of mild steel were inhibited, hence the active molecule of the extract studied acted as a mixed-type corrosion inhibitor.  相似文献   

12.
New environmental friendly sorption materials were synthesized and studied to remove organic contaminants in wastewater purification. Humic acids extracted from green-waste compost (HAcomp) and from leonardite (HAleo) were chemically characterized by infrared spectroscopy, carbon nitrogen and hydrogen analysis, ash content, hydrophobicity tests, and molecular weight distribution. Humic acids were thermally immobilized at 330 °C for 1.5 h and their sorbent properties towards of some benzene derivatives (toluene, o-xylene, phenol, and benzyl alcohol) with the batch equilibrium method were studied. HAcomp was found to be less rich in aromatic rings and more hydrophobic than HAleo. The maximum amount of sorbate bound at the equilibrium was consistently higher for the immobilized HA from compost than from leonardite and increased with the n-octanol/water partition coefficient of the adsorbate. The data point to hydrophobic interactions as the main force involved in the sorption of the compounds tested. The results showed that these materials can have potential applications in wastewater purification.  相似文献   

13.
Three-dimensional (3D) graphene-based nanomaterials have shown wide applications in electrochemical fields such as biosensors. In this study, we displayed a simple fabrication of 3D structural reduced graphene oxide (3D structural RGO) decorated with molybdenum disulfide quantum dots (MoS2QDs) through a three-step reaction process. With its abundant raw materials, this strategy is economic and non-toxic. Various characterization techniques were utilized to characterize the morphologies of the synthesized MoS2QDs, graphene oxide (GO), and 3D structural RGO-MoS2QDs composites. Simultaneously, X-ray photoelectron spectroscopy was applied to characterize the structure and properties of composites. In order to understand the effects of the reaction period on the structure of 3D structural RGO-MoS2QDs, a series of samples with various reaction periods were prepared for morphological characterization. Finally, the fabricated 3D structural RGO-MoS2QDs composites were used to modify a glassy carbon electrode as an electrochemical non-enzymatic hydrogen peroxide (H2O2) sensor. The obtained results indicate that the fabricated electrochemical H2O2 sensor exhibits a wide detection range (0.01–5.57 mM), low detection limit (1.90 μM), good anti-interference performance, and long-time stability (18 days).  相似文献   

14.
The paper presents the electrochemical investigation of mixed oxide YBaCo4O7 in alkaline aqueous solution during oxygen insertion/release. The electrochemical behaviour of YBaCo4O7 has been studied by cyclic voltammetry and electrochemical impedance spectroscopy. In correlation with these techniques, the compound morphology was determined by scanning electron microscopy. Based on the results obtained, the electrochemical processes occurring at the interface mixed oxide (YBaCo4O7)/electrolyte solution have been identified, and furthermore a mechanism of YBaCo4O7 oxidation/reduction in alkaline aqueous solutions has been proposed.  相似文献   

15.
The detection of acute myocardial infarction directly depends on the concentration of the cardiac troponin I (CTnI) in human blood plasma. In this study, the sensitive, selective, and fast sandwich-type electrochemical CTnI immunosensor was developed by using nitrogen and boron-dopped graphene quantum dots -as electrode platform and two-dimensional Ce-dopped SnO2/SnS2 (Ce–SnO2/SnS2) as signal amplification. In preparation of electrochemical CTnI immunosensor, the coordinated covalent bond between capture antibody (anti-CTnI-Ab1) and nitrogen and boron-dopped graphene quantum dots as electrode platform led to immobilization of anti-CTnI-Ab1, and the strong esterification between the secondary antibody (anti-CTnI-Ab2) and thioglycolic acid-modified Ce–SnO2/SnS2 resulted in anti-CTnI-Ab2 conjugation. Finally, the resultant electrochemical CTnI immunosensor was formed via antigen-antibody interaction. High-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis spectroscopy and Raman spectroscopy, as well as some electrochemical characterization techniques, including cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy were used to characterize the prepared immunosensor. The detection limit of CTnI in plasma samples was calculated as 2.00 fg mL?1, making it an effective tool for acute myocardial infarction testing.  相似文献   

16.
The first discharge of the Li+ ion anode material LiSn2(PO4)3 was investigated with Mössbauer spectroscopy and electrochemical techniques. Mössbauer spectroscopy provided insight into the structure of the tin atoms of the fully discharged anode materials. Spectra consist of overlapping peaks, which are assigned to noncrystalline β-Sn and Li–Sn alloy domains. An analysis of the relative intensities of the Mössbauer spectra shows the relative abundance of β-Sn increases at the expense of the Li–Sn alloy as the discharge rate increases. Cell polarization occurs at higher discharge rates, leading to inefficient electrode utilization and poor cycling performance. Sluggish Li+ ion diffusion through the amorphous Li3PO4 network that is formed early in the discharge process might be responsible for the poor electrochemical performance and the accumulation of unalloyed tin.  相似文献   

17.
This paper reports a novel strategy for preparing redox-active electrolyte through introducing a redox-mediator(p-phenylenediamine,PPD) into KOH electrolyte for the application of ball-milled MnO 2-based supercapacitors.The morphology and compositions of ball-milled MnO 2 were characterized using scanning electron microscopy(SEM) and X-ray diffraction(XRD).The electrochemical properties of the supercapacitor were evaluated by cyclic voltammetry(CV),galvanostatic charge-discharge(GCD),and electrochemical impedance spectroscopy(EIS) techniques.The introduction of p-phenylenediamine significantly improves the performance of the supercapacitor.The electrode specific capacitance of the supercapacitor is 325.24 F g-1,increased by 6.25 folds compared with that of the unmodified system(44.87 F g-1) at the same current density,and the energy density has nearly a 10-fold increase,reaching 10.12 Wh Kg-1.In addition,the supercapacitor exhibits good cycle-life stability.  相似文献   

18.
A novel electrochemical nanostructured biosensor based on carbon nanotubes (CNTs) has been constructed by magnetic assembly method. The magnetic multi-walled carbon nanotubes (M-MWNTs) were prepared by introducing Fe2O3 nanoparticles into the nanotubes. Thus the multilayered functional platform could be assembled with the aid of magnetic field. The horseradish peroxidase (HRP) was employed as a model enzyme to demonstrate the final performance of the nanostructured biosensor. SEM, UV–vis spectroscopy and electrochemical techniques were used for characterization of assembly process. The resulting three-dimensional M-MWNTs/HRP multilayer films have showed satisfactory stability, biocompatibility and electrochemical properties.  相似文献   

19.
《Electroanalysis》2018,30(9):2160-2166
The present study focuses on designing and fabricating an electrochemical aptasensor for the label free detection of bisphenol A (BPA) using gold nanoparticles (Au NPs) immobilized on functional cupper magnetic nanoparticles (CuFe2O4‐SH) and multiwall carbon nanotubes (MWCNTs) modified with aptamer and 6‐mercapto‐1‐hexanol (MCH). A number of analysis techniques were used to characterize the nanocomposite, including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, elemental mapping analysis and energy dispersive x‐ray diffraction. The results of the analyses revealed that the fabricated aptasensor had an acceptable linearity index (0.05‐9 nM) with an ultralow detection limit (25.2 pM) when used to determine BPA. Electrochemical experiments were conducted using a [Fe(CN)6]3−/[Fe(CN)6]4− redox system. The results of the electrochemical tests indicated that the existence of Au NPs along with magnetic nanoparticles and MWCNTs in nanocomposite led to a synergistic augmentation on the surface of the modified electrode, thus facilitating the efficient sensing of BPA. This method is highly selective, sensitive and environmentally friendly. Moreover, proposed aptasensor has valuable potential applications in medical diagnostics and food industries where a fast and reliable detection of BPA is of paramount importance for the health of the public.  相似文献   

20.
A sensitive and selective amperometric method for maltol is reported based on a nanostructural Co3O4-assembled Mobil composite material (MCM-41). The amperometric sensor was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, cyclic voltammetry, electrochemical impedance spectroscopy, and ultraviolet–visible absorption spectroscopy. The obtained calibration curve showed that the oxidative peaks increased linearly with the maltol concentration from 1.66?×?10?6?M to 1.15?×?10?4?M with a detection limit of 0.42?µM. Furthermore, the mechanism of oxidation of the analyte on the modified electrode surface was investigated using electrochemical techniques. The modified electrode was used for the determination of maltol using the method of standard addition with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号