首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Raman scattering signals recorded by microscopy from organic self-assembled monolayers (thin nanometric films of calibrated thickness) on silica substrates were found to be much stronger than those obtained from identical films assembled on bulk silicon substrates. This effect, observed in the backscattering geometry, is shown to result from interferences between the direct and reflected beams (including both the excitation and scattered radiation) in front of a smooth reflecting surface. Strong dependence of the effect on the distance between the sampled monolayer and the bulk silicon substrate allows enhancement of the Raman signals of organic monolayer films on silicon by factors up to approximately 70 by using appropriate silica spacers. The dependence of the Raman signal intensity on film thickness was also studied for thicker nanometric films comprising a series of self-assembled organosilane multilayers on bulk silicon and fused silica substrates, and the predicted deviation from linearity in the case of the silicon substrate is experimentally confirmed.  相似文献   

2.
All-dielectric nanoparticles, as the counterpart of metallic nanostructures have recently attracted significant interest in manipulating light-matter interaction at a nanoscale. Directional scattering, as an important property of nanoparticles, has been investigated in traditional high refractive index materials, such as silicon, germanium and gallium arsenide in a narrow band range. Here in this paper, we demonstrate that a broadband forward scattering across the entire visible range can be achieved by the low loss TiO2 nanoparticles with moderate refractive index. This mainly stems from the optical interferences between the broadband electric dipole and the magnetic dipole modes. The forward/backward scattering ratio reaches maximum value at the wavelengths satisfying the first Kerker’s condition. Experimentally, the femtosecond pulsed laser was employed to splash different-sized nanoparticles from a thin TiO2 film deposited on the glass substrate. Single particle scattering measurement in both the forward and backward direction was performed by a homemade confocal microscopic system, demonstrating the broadband forward scattering feature. Our research holds great promise for many applications such as light harvesting, photodetection and on-chip photonic devices and so on.  相似文献   

3.
Elastic light scattering is reported using monochromatic vacuum-ultraviolet radiation to study free, spherical silica nanoparticles prepared by approaches from colloidal chemistry, with diameters between 100 and 240 nm. The colloidal nanoparticles of defined size are transferred from an aqueous solution into the gas phase using a particle beam experiment. After focusing of the particle beam by an aerodynamic lens, the scattered light from monochromatic synchrotron radiation is measured. Angle-resolved elastically scattered light is detected, showing a strong forward-scattering component. Additional evidence for the detection of elastically scattered light comes from plotting the scattered light intensity as a function of the dimensionless parameter qR, where q is the magnitude of the scattering wave vector and R is the particle radius. This yields different power-law regimes that are assigned to scattering from the surface and the bulk of the nanoparticles. Furthermore, there is evidence for modulations in the scattered light intensity as a function of scattering angle, which is clearly distinguished from the forward-scattering component. The experimental results are compared to Mie scattering simulations for isolated particles, yielding general agreement with the experimental results. Deviations from Mie simulations are observed for samples consisting of significant amounts of aggregates. The present results indicate that the optical properties of free nanoparticles are sensitively probed by vacuum-ultraviolet radiation.  相似文献   

4.
The influence of dielectric substrates on the Raman scattering activities of Ag overlayers has been investigated. Materials with low refractive indices, such as SiO2, SiOx and AlF3, were found to provide suitable supporting platforms for Ag films to give strong surface-enhanced Raman scattering for dye molecules when illuminated at 488 nm. This finding was then extended to tip-enhanced Raman scattering (TERS). Huge enhancements of 70–80×, corresponding to net enhancements of >104, were observed for brilliant cresyl blue test analyte when Ag-coated tips made from or precoated with low refractive index materials were applied. The yield of fabricated tips that significantly enhance the Raman signals was found to be close to 100%. These findings provide crucial steps towards the use of TERS as a robust technique for rapid chemical imaging with nanometer spatial resolution. Figure Silver-coated dielectric tips for tip-enhanced Raman scattering (TERS) are capable of more than 10,000-fold enhancement  相似文献   

5.
Finite element (FE) models were built to define the optimal experimental conditions for tip-enhanced Raman spectroscopy (TERS) of thin samples. TERS experimental conditions were mimicked by including in the FE models dielectric or metallic substrates with thin dielectric samples and by considering the wavelength dependence of the dielectric properties for the metallic materials. Electromagnetic coupling between the substrate/sample and the SPM tips led to dramatic changes of both the spatial distribution and magnitude of the scattered electric field which depended on the substrate dielectric permittivity and excitation wavelength. Raman scattering as high as 10(8) with a spatial resolution of approximately 8 nm was estimated for gold SPM tips and gold substrate when excitation is performed at 532 nm (near-resonance wavelength). For dielectric samples (approximately 4 nm thick), the enhancement of Raman scattering intensity is estimated at approximately 10(5); this does not depend significantly on the sample dielectric permittivity for dielectric samples. These results suggest that TERS experimental conditions should be estimated and optimized for every individual application considering the geometric factors and electric properties of the materials involved. Such optimizations could enlarge the range of applications for TERS to samples eliciting weaker intrinsic Raman scattering, such as biological samples.  相似文献   

6.
We have investigated on the synthesis of SrTiO3 nanoparticles whose bulk exhibits dielectric constant of 300, and their colloidal dispersion. As a result, we successfully synthesized SrTiO3 nanoparticles with an average diameter of 134–485 nm measured by a scanning electron microscopic observation. The SrTiO3 nanoparticles with a negative charge (ζ = −25 to −31 mV) can be dispersed as colloidal nanoparticles in water, and the average diameter in the dispersion were 138–356 nm measured by a dynamic light scattering technique. The colloidal dispersion of SrTiO3 nanoparticles is promising for fabrication of low-voltage organic field-effect transistors (FETs) by a wet-processing fabrication. We have also successfully prepared SrTiO3 films with a thickness of 1–10 μm on n-doped silicon substrates by an electrophoretic deposition technique. The SrTiO3 films on the silicon substrates are likely used as dielectric gate insulator to low-voltage organic FETs after a sintering treatment.  相似文献   

7.
The optical properties of hollow nanoparticles (Au-Ag nanoboxes and nanocages) were investigated by recording Rayleigh scattering spectra of single particles, whose morphology and composition had been analyzed by scanning electron microscopy (SEM). This was achieved by depositing the particles on optically transparent substrates with registration marks, which are compatible with SEM imaging. Fitting the experimental spectra to a Lorentzian function yields the frequencies and homogeneous line widths of the plasmon resonance for the particles. The resonances are extremely broad, with dephasing times of 2-5 fs. Analysis of the line width data using the dimensions determined by SEM shows that the broadening is due to a combination of electron-surface scattering and radiation damping. The sensitivity of the plasmon resonance to the dielectric constant of the environment was also investigated by adding a drop of water to the substrate. The nanoboxes show similar dielectric sensitivities compared to other metal nanoparticle systems. A significant increase in the line width was also observed for the nanoboxes in water compared with air. This was attributed to increased radiation damping in the environment with a higher dielectric constant. Both the red shift and the increase in line width are reversible.  相似文献   

8.
采用易操作且低成本的静电自组装方法, 在质子化的玻璃基片上, 通过交替沉积氧化石墨烯(GO) 和带正电荷的银纳米粒子(AgNPs) 获得少数层GO和AgNPs复合薄膜(AgNPs/GO). 采用紫外-可见光吸收光谱、 原子力显微镜和扫描电子显微镜对复合薄膜的生长和表面形貌进行了表征. 结果表明, 通过调控AgNPs 溶胶浓度和自组装循环次数, 可以获得AgNPs/GO/AgNPs 的三明治结构, 并在基底表面形成均匀的AgNPs 聚集体. 表面增强拉曼散射(SERS)研究结果表明, AgNPs/GO-4基底具有最佳的SERS性能, 其对罗丹明6G(R6G) 和结晶紫的平均拉曼增强因子分别为3.4×108和1.3×109, 对R6G的最低检测浓度约为10-12 mol/L. 多层三明治结构和较小颗粒间距使得AgNPs层之间产生强烈的耦合作用, 并在GO片层间产生大量的“热点”, 显著提高SERS性能, 而少数层GO具有强吸附性, 有利于分子在基底中富集, 从而起到化学增强作用, 提高SERS灵敏度.  相似文献   

9.
Metal oxide nanoparticles prepared by pulsed laser deposition (PLD) were applied to nonenzymatic glucose detection. NiO nanoparticles with size of 3 nm were deposited on glassy carbon (GC) and silicon substrates at room temperature in an oxygen atmosphere. Transmission electron microscope (TEM) image showed nanoparticles with the size of 3 nm uniformly scattered on the Si(0 0 1) substrate. Unlike co-sputtering nanoparticle and carbon simultaneously, the PLD method can easily control the surface coverage of nanoparticles on the surface of substrate by deposition time. Cyclic voltammetry was performed on the samples deposited on the GC substrates for electrochemical detection of glucose. The differences between peak currents with and without glucose was used to optimize the coverage of nanoparticles on carbon electrode. The results indicated that optimal coverage of nanoparticles on carbon electrode.  相似文献   

10.
An apertureless near-field scanning optical microscope (ANSOM) that utilizes the enhanced field around a gold nanosphere, which is attached to the end of an atomic force microscope (AFM) tip, is used to image the local dielectric constant of the patterned metallic surfaces and local electric field around plasmonic nanosphere samples. A colloidal gold nanosphere (approximately 50 nm diameter) is linked to the extremity of the conventional etched-silicon probe. The scattering of laser radiation (633 or 532 nm) is modulated by the oscillating nanosphere-functionalized silicon tip, and the scattered radiation is detected. The approach curve (scattering intensity as a function of the tip-sample distance), the polarization dependence (scattering intensity as a function of the excitation polarization direction), and ANSOM image contrast confirm that the spherical nanosphere attached to the silicon tip acts as a point dipole that interacts with the sample surface via a dipole-dipole coupling, in which the dipole created by the field at the tip interacts with its own image dipole in the sample. The image obtained with the nanoparticle functionalized tip provides a dielectric map of the sample surface with a spatial resolution better than 80 nm. In addition, we show that the functionalized tip is capable of imaging the local electric field distribution above the plasmonic nanosphere samples. Overall, the result shows that high-resolution ANSOM is possible without the aid of the lightning-rod effect. With an improved tip-fabrication method, we believe that the method can provide a versatile high-resolution chemical imaging that is not available from usual forms of ANSOM.  相似文献   

11.
The design and initial characterization of the self-assembled gold colloid monolayer by a sandwich structure via the immunological identification are reported. The 13 nm gold colloid nanoparticles and the silicon or quartz substrates have been modified with the mouse polyclonal antibody against hepatitis B virus surface antigen (PAb) and the mouse monoclonal antibody against hepatitis B virus surface antigen (MAb), respectively. They can be linked by a special reaction with their corresponding hepatitis B virus surface antigen (Antigen) as a sandwich structure. Thus, the density of gold nanoparticles self-assembled on the substrate can be readily controlled by the amount of the antigen added. The resulting substrates have been characterized by atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy when the gold nanoparticles were modified with SERS-active probe molecules of 4-mercaptobenzoic acid (MBA) after silver enhancement. These data show that the gold nanoparticles are separately fixed onto the substrate and form a uniform monolayer, which possess a set of features that make them very attractive for both basic and applied uses, including roughness, high stability, and biocompatibility.  相似文献   

12.
In understanding of the hot spot phenomenon in single-molecule surface enhanced Raman scattering (SM-SERS), the electromagnetic field within the gaps of dimers (i.e., two particle systems) has attracted much interest as it provides significant field amplification over single isolated nanoparticles. In addition to the existing understanding of the dimer systems, we show in this paper that field enhancement within the gaps of a particle chain could maximize at a particle number N>2, due to the near-field coupled plasmon resonance of the chain. This particle number effect was theoretically observed for the gold (Au) nanoparticles chain but not for the silver (Ag) chain. We attribute the reason to the different behaviors of the dissipative damping of gold and silver in the visible wavelength range. The reported effect can be utilized to design effective gold substrate for SM-SERS applications.  相似文献   

13.
采用溶胶-凝胶法分别在K9玻璃、单晶硅和石英玻璃基底上制备了纳米TiO2和SiO2薄膜。利用SEM、UV-Vis及反射式椭圆偏振光谱仪对薄膜的微观结构及光学特性进行了表征和分析。结果表明:3种基底中, 单晶硅基底上TiO2和SiO2薄膜折射率最大;在非晶态K9玻璃和石英玻璃基底上TiO2薄膜折射率和透光率差异较大;SiO2薄膜在非晶态基底上折射率、透光率相近;3种基底上薄膜的折射率和消光系数都有随波长增大而减小的趋势, 同时Cauchy模型能较好的描述单晶硅基底上两种薄膜在400~800 nm波段的光学性能。  相似文献   

14.
采用溶胶-凝胶法分别在K9玻璃、单晶硅和石英玻璃基底上制备了纳米TiO2和SiO2薄膜。利用SEM、UV-Vis及反射式椭圆偏振光谱仪对薄膜的微观结构及光学特性进行了表征和分析。结果表明:3种基底中, 单晶硅基底上TiO2和SiO2薄膜折射率最大;在非晶态K9玻璃和石英玻璃基底上TiO2薄膜折射率和透光率差异较大;SiO2薄膜在非晶态基底上折射率、透光率相近;3种基底上薄膜的折射率和消光系数都有随波长增大而减小的趋势, 同时Cauchy模型能较好的描述单晶硅基底上两种薄膜在400~800 nm波段的光学性能。  相似文献   

15.
近年来,偶氮苯类化合物的光学顺反异构现象已引起人们的广泛关注[1~7].在紫外光照射下,偶氮苯由反式结构转变为顺式结构,引起分子的偶极矩发生变化,导致分子的吸收光谱、尺寸及表面能等均发生变化[7].偶氮苯表面能的改变可引起其表面浸润性发生变化.据文献[1~4]报道,偶氮苯膜在紫外光照射前后接触角最大改变了11°.浸润性是固体表面的一个重要特性,主要受固体表面的化学组成和微观几何结构(粗糙度)影响[8~11].通常,与水的接触角大于150°的表面称为超疏水表面;而与水的接触角小于5°的表面称为超亲水表面.本文以2-(4-偶氮苯基苯氧基)丙烯酸…  相似文献   

16.
单纳米颗粒作为信号感应单元在化学与生物传感应用中已引起广泛关注.本文通过暗场显微成像(iDFM)研究了不同径向比金纳米棒的光散射性质.将iDFM与扫描电子显微镜(SEM)结合表征种子生长法制备的金纳米棒,结果发现,因局域表面等离子体共振而展示出的红色散射光随单个金纳米棒的径向比增大逐渐红移,且金纳米棒对其周围介质折光率(RI)变化的敏感程度随径向比增大而增大.这一结果对设计高灵敏的生物纳米传感器、提高分析检测的灵敏度具有很好的指导意义.  相似文献   

17.
A thin‐film of dielectric on a reflecting surface constituting a multilayer substrate modulates light intensity due to the interference effect. A nanostructure consisting of randomly oriented silver particles of different shapes, sizes, and interparticle spacings supports multiple plasmon resonances and is observed to have a broad extinction spectrum that spans the entire visible region. Combining the two systems by fabricating the nanostructure on the thin‐dielectric film of the multilayer substrate yields a new composite structure which is observed to modulate both the extinction spectrum and the SERS EF (surface enhanced Raman scattering enhancement factor) of the nanostructure as the thickness of the thin‐film dielectric is varied. The frequency and intensity of the visible extinction spectrum vary dramatically with the dielectric thickness and in the intermediate thickness range the spectrum has no visible band. The SERS EF determined for the composite structure as a function of the thin‐film dielectric thickness varies by several orders of magnitude. Strong correlation between the magnitude of the SERS EF and the extinction intensity is observed over the entire dielectric thickness range indicating that the extinction spectrum corresponds to the excitation of the plasmon resonances of the nanostructure. A significant finding which has potential applications is that the composite structure has synergic effect to boost SERS EF of the nanostructure by an order of magnitude or more compared to the same nanostructure on an unlayered substrate.  相似文献   

18.
This work investigates the effect of gold nanoparticle (AuNP) addition to paper substrate and examines the ability of these composite materials to amplify the surface enhanced Raman scattering (SERS) signal of a dye adsorbed. Paper has a three-dimensional (3D), porous, and heterogeneous morphology. The manner in which paper adsorbs the nanoparticles is crucial to its SERS properties, particularly with regards to aggregation. In this work, we sought to maintain the same degree of aggregation, while changing the concentration of nanoparticles deposited on paper. We achieved this by dipping paper into AuNP solutions of different, known concentration and found that the initial packing density of AuNPs in solutions was retained on paper with the same degree of aggregation. The surface coverage of AuNPs on paper was found to scale linearly to their concentration profile in solutions. The SERS performances of the AuNP-treated papers were evaluated with 4-aminothiophenol (4-ATP) as the Raman molecule, and their SERS intensities increased linearly with the AuNPs' concentration. Compared to AuNP-treated silicon, the Raman enhancement factor (EF) from paper was relatively higher due to a more uniform and greater degree of adsorption of AuNPs. The effect of the spatial distribution of AuNPs in their substrates on SERS activity was also investigated. In this experiment, the number of AuNPs was kept constant (a 1 μL droplet of AuNPs was deposited on all substrates), and the distribution profile of AuNPs was controlled by the nature of the substrate: paper, silicon, and hydrophobized paper. The AuNP droplet on paper showed the most reproducible and sensitive SERS signal. This highlighted the role of the z-distribution (through film) of AuNPs within the bulk of the paper, producing a 3D multilayer structure to allow inter- and intralayer plasmon coupling, and hence amplifying the SERS signal. The SERS performance of nanoparticle-functionalized paper can thus be optimized by controlling the 3D distribution of the metallic nanoparticles, and such control is critical if these systems are to be implemented as a low-cost and highly sensitive bioassay platform.  相似文献   

19.
As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.  相似文献   

20.
In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to Ag nanoparticles in a colloid solution and then transfers the Ag nanoparticles capped by negatively charged mercaptoacetic acid onto a quartz slide. By transfer of the AgI/Ag nanoparticles from the colloid solutions to the solid substrates, the problem of instability of the colloid solutions can largely be overcome. The films thus prepared by both approaches retain the merits of metal colloid solutions while they discharge their shortcomings. Accordingly, the obtained Ag particle films are very suitable as SERS active substrates. SERS active substrates with different coverages can be formed in a layer-by-layer electrostatic assembly by exposing positively charged surfaces to the colloid solutions containing oppositely charged AgI/Ag nanoparticles. The SERS active substrates fabricated by the two novel methods have been characterized by means of atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) spectroscopy. The results of AFM and UV-vis spectroscopy show that the Ag nanoparticles grow with the increase in the number of coverage and that most of them remain isolated even at high coverages. Consequently, the surface optical properties are dominated by the absorption due to the isolated Ag nanoparticles. The relationship between SERS intensity and surface morphology of the new active substrates has been investigated for Rhodamine 6G (R6G) adsorbed on them. It has been found that the SERS enhancement depends on the size and aggregation of the Ag particles on the substrates. Especially, we can obtain a stronger SERS signal from the substrate prepared by method 1, implying that for the metal nanoparticles capped with stabilizer molecules such as mercaptoacetic acid, the in situ deoxidization in the film is of great use in preparing SERS active substrates. Furthermore, we have found that the addition of Cl- into the AgI colloid solution changes the surface morphology of the SERS active substrates and favors stronger SERS enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号