首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Ab initio calculations have been performed for the complexes of DMSO and phenyltrifluorosilane (PTS) and its derivatives with a substituent of NH3, OCH3, CH3, OH, F, CHO, CN, NO2, and SO3H. It is necessary to use sufficiently flexible basis sets, such as aug’-cc-pVTZ, to get reliable results for the Si···O tetrel bonds. The tetrel bond in these complexes has been characterized in views of geometries, interaction energies, orbital interactions and topological parameters. The electron-donating group in PTS weakens this interaction and the electron-withdrawing group prominently strengthens it to the point where it exceeds that of the majority of hydrogen bonds. The largest interaction energy occurs in the p-HO3S-PhSiF3···DMSO complex, amounting to −122 kJ/mol. The strong Si···O tetrel bond depends to a large extent on the charge transfer from the O lone pair into the empty p orbital of Si, although it has a dominant electrostatic character. For the PTS derivatives of NH2, OH, CHO and NO2, the hydrogen bonded complex is favorable to the tetrel bonded complex for the NH2 and OH derivatives, while the σ-hole interaction prefers the π-hole interaction for the CHO and NO2 derivatives.  相似文献   

2.
Complexes of the Lewis base-free cations (MeBDI)Mg+ and (tBuBDI)Mg+ with Ph–X ligands (X = F, Cl, Br, I) have been studied (MeBDI = HC[C(Me)N-DIPP]2 and tBuBDI = HC[C(tBu)N-DIPP]2; DIPP = 2,6-diisopropylphenyl). For the smaller β-diketiminate ligand (MeBDI) only complexes with PhF could be isolated. Heavier Ph–X ligands could not compete with bonding of Mg to the weakly coordinating anion B(C6F5)4. For the cations with the bulkier tBuBDI ligand, the full series of halobenzene complexes was structurally characterized. Crystal structures show that the Mg⋯X–Ph angle strongly decreases with the size of X: F 139.1°, Cl 101.4°, Br 97.7°, I 95.1°. This trend, which is supported by DFT calculations, can be explained with the σ-hole which increases from F to I. Charge calculation and Atoms-In-Molecules analyses show that Mg⋯F–Ph bonding originates from electrostatic attraction between Mg2+ and the very polar Cδ+–Fδ bond. For the heavier halobenzenes, polarization of the halogen atom becomes increasingly important (Cl < Br < I). Complexation with Mg leads in all cases to significant Ph–X bond activation and elongation. This unusual coordination of halogenated species to early main group metals is therefore relevant to C–X bond breaking.

Complexes of a highly Lewis acidic Mg cation and the full series of Ph–X (X = F, Cl, Br, I) have been structurally characterized. The Mg⋯X–Ph angle decreases with halogen size on account of the growing halogen σ-hole.  相似文献   

3.
The nature of halogen-bond interactions was scrutinized from the perspective of astatine, potentially the strongest halogen-bond donor atom. In addition to its remarkable electronic properties (e.g., its higher aromaticity compared to benzene), C6At6 can be involved as a halogen-bond donor and acceptor. Two-component relativistic calculations and quantum chemical topology analyses were performed on C6At6 and its complexes as well as on their iodinated analogues for comparative purposes. The relativistic spin–orbit interaction was used as a tool to disclose the bonding patterns and the mechanisms that contribute to halogen-bond interactions. Despite the stronger polarizability of astatine, halogen bonds formed by C6At6 can be comparable or weaker than those of C6I6. This unexpected finding comes from the charge-shift bonding character of the C–At bonds. Because charge-shift bonding is connected to the Pauli repulsion between the bonding σ electrons and the σ lone-pair of astatine, it weakens the astatine electrophilicity at its σ-hole (reducing the charge transfer contribution to halogen bonding). These two antinomic characters, charge-shift bonding and halogen bonding, can result in weaker At-mediated interactions than their iodinated counterparts.  相似文献   

4.
Intermolecular bonding attraction at π-bonded centers is often described as “electrostatically driven” and given quasi-classical rationalization in terms of a “pi hole” depletion region in the electrostatic potential. However, we demonstrate here that such bonding attraction also occurs between closed-shell ions of like charge, thereby yielding locally stable complexes that sharply violate classical electrostatic expectations. Standard DFT and MP2 computational methods are employed to investigate complexation of simple pi-bonded diatomic anions (BO, CN) with simple atomic anions (H, F) or with one another. Such “anti-electrostatic” anion–anion attractions are shown to lead to robust metastable binding wells (ranging up to 20–30 kcal/mol at DFT level, or still deeper at dynamically correlated MP2 level) that are shielded by broad predissociation barriers (ranging up to 1.5 Å width) from long-range ionic dissociation. Like-charge attraction at pi-centers thereby provides additional evidence for the dominance of 3-center/4-electron (3c/4e) nD-π*AX interactions that are fully analogous to the nD-σ*AH interactions of H-bonding. Using standard keyword options of natural bond orbital (NBO) analysis, we demonstrate that both n-σ* (sigma hole) and n-π* (pi hole) interactions represent simple variants of the essential resonance-type donor-acceptor (Bürgi–Dunitz-type) attraction that apparently underlies all intermolecular association phenomena of chemical interest. We further demonstrate that “deletion” of such π*-based donor-acceptor interaction obliterates the characteristic Bürgi–Dunitz signatures of pi-hole interactions, thereby establishing the unique cause/effect relationship to short-range covalency (“charge transfer”) rather than envisioned Coulombic properties of unperturbed monomers.  相似文献   

5.
The spodium–π bonding between MX2 (M = Zn, Cd, and Hg; X = Cl, Br, and I) acting as a Lewis acid, and C2H2/C2H4 acting as a Lewis base was studied by ab initio calculations. Two types of structures of cross (T) and parallel (P) forms are obtained. For the T form, the X–M–X axis adopts a cross configuration with the molecular axis of C≡C or C=C, but both of them are parallel in the P form. NCI, AIM, and electron density shifts analyses further, indicating that the spodium–π bonding exists in the binary complexes. Spodium–π bonding exhibits a partially covalent nature characterized with a negative energy density and large interaction energy. With the increase of electronegativity of the substituents on the Lewis acid or its decrease in the Lewis base, the interaction energies increase and vice versa. The spodium–π interaction is dominated by electrostatic interaction in most complexes, whereas dispersion and electrostatic energies are responsible for the stability of the MX2⋯C2F2 complexes. The spodium–π bonding further complements the concept of the spodium bond and provides a wider range of research on the adjustment of the strength of spodium bond.  相似文献   

6.
CCSD(T)/aug-cc-pVTZ//ωB97XD/aug-cc-pVTZ calculations were performed for halogen-bonded complexes. Here, the molecular hydrogen, cyclopropane, cyclobutane and cyclopentane act as Lewis base units that interact through the electrons of the H–H or C–C σ-bond. The FCCH, ClCCH, BrCCH and ICCH species, as well as the F2, Cl2, Br2 and I2 molecular halogens, act as Lewis acid units in these complexes, interacting through the σ-hole localised at the halogen centre. The Quantum Theory of Atoms in Molecules (QTAIM), the Natural Bond Orbital (NBO) and the Energy Decomposition Analysis (EDA) approaches were applied to analyse these aforementioned complexes. These complexes may be classified as linked by A–X···σ halogen bonds, where A = C, X (halogen). However, distinct properties of these halogen bonds are observed that depend partly on the kind of electron donor: dihydrogen, cyclopropane, or another cycloalkane. Examples of similar interactions that occur in crystals are presented; Cambridge Structural Database (CSD) searches were carried out to find species linked by the A–X···σ halogen bonds.  相似文献   

7.
The bifurcated σ-hole···σ-hole stacking interactions between organosulfur molecules, which are key components of organic optical and electronic materials, were investigated by using a combined method of the Cambridge Structural Database search and quantum chemical calculation. Due to the geometric constraints, the binding energy of one bifurcated σ-hole···σ-hole stacking interaction is in general smaller than the sum of the binding energies of two free monofurcated σ-hole···σ-hole stacking interactions. The bifurcated σ-hole···σ-hole stacking interactions are still of the dispersion-dominated noncovalent interactions. However, in contrast to the linear monofurcated σ-hole···σ-hole stacking interaction, the contribution of the electrostatic energy to the total attractive interaction energy increases significantly and the dispersion component of the total attractive interaction energy decreases significantly for the bifurcated σ-hole···σ-hole stacking interaction. Another important finding of this study is that the low-cost spin-component scaled zeroth-order symmetry-adapted perturbation theory performs perfectly in the study of the bifurcated σ-hole···σ-hole stacking interactions. This work will provide valuable information for the design and synthesis of novel organic optical and electronic materials.  相似文献   

8.
An efficient strategy for designing charge-transfer complexes using coinage metal cyclic trinuclear complexes (CTCs) is described herein. Due to opposite quadrupolar electrostatic contributions from metal ions and ligand substituents, [Au(μ-Pz-(i-C3H7)2)]3·[Ag(μ-Tz-(n-C3F7)2)]3 (Pz = pyrazolate, Tz = triazolate) has been obtained and its structure verified by single crystal X-ray diffraction – representing the 1st crystallographically-verified stacked adduct of monovalent coinage metal CTCs. Abundant supramolecular interactions with aggregate covalent bonding strength arise from a combination of M–M′ (Au → Ag), metal–π, π–π interactions and hydrogen bonding in this charge-transfer complex, according to density functional theory analyses, yielding a computed binding energy of 66 kcal mol−1 between the two trimer moieties – a large value for intermolecular interactions between adjacent d10 centres (nearly doubling the value for a recently-claimed Au(i) → Cu(i) polar-covalent bond: Proc. Natl. Acad. Sci. U.S.A., 2017, 114, E5042) – which becomes 87 kcal mol−1 with benzene stacking. Surprisingly, DFT analysis suggests that: (a) some other literature precedents should have attained a stacked product akin to the one herein, with similar or even higher binding energy; and (b) a high overall intertrimer bonding energy by inferior electrostatic assistance, underscoring genuine orbital overlap between M and M′ frontier molecular orbitals in such polar-covalent M–M′ bonds in this family of molecules. The Au → Ag bonding is reminiscent of classical Werner-type coordinate-covalent bonds such as H3N: → Ag in [Ag(NH3)2]+, as demonstrated herein quantitatively. Solid-state and molecular modeling illustrate electron flow from the π-basic gold trimer to the π-acidic silver trimer with augmented contributions from ligand-to-ligand’ (LL′CT) and metal-to-ligand (MLCT) charge transfer.

A stacked Ag3–Au3 bonded (66 kcal mol−1) complex obtained crystallographically exhibits charge-transfer characteristics arising from multiple cooperative supramolecular interactions.  相似文献   

9.
Condensation of 2-hydroxybenzaldehyde (salicylaldehyde) or 2-hydroxy-1-naphthaldehyde with 2-ethylaniline yields the Schiff base compound of (E)-2-(((2-ethylphenyl)imino)methyl)phenol (HL1) or (E)-1-(((2-ethylphenyl)imino)methyl)naphthalen-2-ol (HL2), which in turn react with the dinuclear complex of [Rh(η4-cod)(µ-O2CCH3)]2 (cod = cycloocta-1,5-diene) to afford the mononuclear (η4-cod){(E)-2-(((2-ethylphenyl)imino)methyl)phenolato-κ2N,O}rhodium(I), [Rh(η4-cod)(L1)] (1) or (η4-cod){(E)-1-(((2-ethylphenyl)imino)methyl)naphthalen-2-olato-κ2N,O}rhodium(I), [Rh(η4-cod)(L2)] (2) (L1 or L2 = deprotonated Schiff base ligand). The X-ray structure determination revealed that the HL2 exists in the solid state not as the usual (imine)N···H-O(phenol) form (enolamine form) but as the zwitterionic (imine)N-H+···O(phenol) form (ketoamine form). 1H NMR spectra for HL2 in different solvents demonstrated the existence of keto-enol tautomerism (i.e., keto ⇆ enol equilibrium) in solution. The structure for 1 and 2 showed that the deprotonated Schiff base ligand coordinates to the Rh(η4-cod)-fragment as a six-membered N^O-chelate around the rhodium atom with a close-to-square-planar geometry. Two symmetry-independent molecules (with Rh1 and Rh2) were found in the asymmetric unit in 1 in a structure with Z’ = 2. The supramolecular packing in HL2 was organized by π-π and C-H···π contacts, while only two recognized C-H···π contacts were revealed in 1 and 2. Remarkably, there were reciprocal or pairwise C-H···π contacts between a pair of each of the symmetry-independent molecules in 1. This pairwise C-H contact to the Rh-N^O chelate (metalloaromatic) ring may be a reason for the two symmetry-independent molecules in 1. Differential scanning calorimetry (DSC) analyses revealed an irreversible phase transformation from the crystalline-solid to the isotropic-liquid phase and subsequently confirmed the thermal stability of the compounds. Absorption spectra in solution were explained by excited state properties from DFT/TD-DFT calculations.  相似文献   

10.
Derivatives of main group elements containing element–element bonds are characterized by unique properties due to σ-conjugation, which is an attractive subject for investigation. A novel series of digermanes, Ar3Ge-Ge(SiMe3)3, containing aryl (Ar = p-C6H4Me (1), p-C6H4F (2), C6F5 (3)) and trimethylsilyl substituents, was synthesized by the reaction of germyl potassium salt, [(Me3Si)3GeK*THF], with triarylchlorogermanes, Ar3GeCl. The optical and electronic properties of such substituted oligoorganogermanes were investigated spectroscopically by UV/vis absorption spectroscopy and theoretically by DFT calculations. The molecular structures of compounds 1 and 2 were studied by XRD analysis. Conjugation between all structural fragments (Ge-Ge, Ge-Si, Ge-Ar, where Ar is an electron-donating or withdrawing group) was found to affect the properties.  相似文献   

11.
Structural analysis and docking studies of three adamantane-linked 1,2,4-triazole N-Mannich bases (1–3) are presented. Compounds 1, 2 and 3 crystallized in the monoclinic P21/c, P21 and P21/n space groups, respectively. Crystal packing of 1 was stabilized by intermolecular C-H⋯O interactions, whereas compounds 2 and 3 were stabilized through intermolecular C-H⋯N, C-H⋯S and C-H⋯π interactions. The energy frameworks for crystal structures of 1–3 were described. The substituent effect on the intermolecular interactions and their contributions were described on the basis of Hirshfeld surface analyses. The 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibition potential, pharmacokinetic and toxicity profiles of compounds 1–3 were determined using in silico techniques. Molecular docking of the compounds into the 11β-HSD1 active site showed comparable binding affinity scores (−7.50 to −8.92 kcal/mol) to the 11β-HSD1 co-crystallized ligand 4YQ (−8.48 kcal/mol, 11β-HSD1 IC50 = 9.9 nM). The compounds interacted with key active site residues, namely Ser170 and Tyr183, via strong hydrogen bond interactions. The predicted pharmacokinetic and toxicity profiles of the compounds were assessed, and were found to exhibit excellent ADMET potential.  相似文献   

12.
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.  相似文献   

13.
Molecules of the type XYT = Ch (T = C, Si, Ge; Ch = S, Se; X,Y = H, CH3, Cl, Br, I) contain a σ-hole along the T = Ch bond extension. This hole can engage with the N lone pair of NCH and NCCH3 so as to form a chalcogen bond. In the case of T = C, these bonds are rather weak, less than 3 kcal/mol, and are slightly weakened in acetone or water. They owe their stability to attractive electrostatic energy, supplemented by dispersion, and a much smaller polarization term. Immersion in solvent reverses the electrostatic interaction to repulsive, while amplifying the polarization energy. The σ-holes are smaller for T = Si and Ge, even negative in many cases. These Lewis acids can nonetheless engage in a weak chalcogen bond. This bond owes its stability to dispersion in the gas phase, but it is polarization that dominates in solution.  相似文献   

14.
The gauche conformation of the 1,2-difluoroethane motif is known to involve stabilising hyperconjugative interactions between donor (bonding, σC–H) and acceptor (antibonding, σ*C–F) orbitals. This model rationalises the generic conformational preference of F–Cβ–Cα–X systems (φFCCX ≈ 60°), where X is an electron deficient substituent containing a Period 2 atom. Little is known about the corresponding Period 3 systems, such as sulfur and phosphorus, where multiple oxidation states are possible. Conformational analyses of β-fluorosulfides, -sulfoxides and -sulfones are disclosed here, thus extending the scope of the fluorine gauche effect to the 3rd Period (F–C–C–S(O)n; φFCCS ≈ 60°). Synergy between experiment and computation has revealed that the gauche effect is only pronounced in structures bearing an electropositive vicinal sulfur atom (S+–O, SO2).  相似文献   

15.
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.  相似文献   

16.
Coordination networks formed between Co(NCS)2 and 4’-substituted-[1,1’-biphenyl]-4-yl-3,2’:6’,3”-terpyridines in which the 4’-group is Me (1), H (2), F (3), Cl (4) or Br (5) are reported. [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, [Co(4)2(NCS)2]n, and [Co(5)2(NCS)2]n·nCHCl3 are 2D-networks directed by 4-connecting cobalt nodes. Changes in the conformation of the 3,2’:6’,3”-tpy unit coupled with the different peripheral substituents lead to three structure types. In [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, cone-like arrangements of [1,1’-biphenyl]-4-yl units pack through pyridine…arene π-stacking, whereas Cl…π interactions are dominant in the packing in [Co(4)2(NCS)2]n. The introduction of the Br substituent in ligand 5 switches off both face-to-face π-stacking and halogen…π-interactions, and the packing interactions are more subtly controlled. Assemblies with organic linkers 1–3 are structurally similar and the lattice accommodates CHCl3 molecules in distinct cavities; thermogravimetric analysis confirmed that half the solvent in [Co(3)2(NCS)2]n·4nCHCl3 can be reversibly removed.  相似文献   

17.
A family of bis[(R or S)‐N‐1‐(Ar)ethylsalicylaldiminato‐κ2N,O]‐Δ/Λ‐zinc(II) {Ar=C6H5 (ZnRL1 or ZnSL1), p‐CH3OC6H4 (ZnRL2 or ZnSL2) and p‐ClC6H4 (ZnRL3 or ZnSL3)} compounds was synthesized and investigated by multiple methods. They feature Λ/Δ‐chirality‐at‐metal induction along the pseudo‐C 2 axis of the molecules. The chirality induction is quantitative in the solid state, explored by X‐ray crystallography and powder X‐ray diffraction (PXRD), where R or S‐ligated complexes diastereoselectively yield Λ or Δ‐configuration at the metal. On the other hand, Λ and Δ‐diastereomers co‐exist in solution. The Λ⇆Δ equilibrium is solvent‐ and temperature‐dependent. Electronic circular dichroism (ECD) spectra confirm the existence of a diastereomeric excess of Λ‐ZnRL1−3 or Δ‐ZnSL1−3 in solution. DSC analysis reveals thermally induced irreversible phase transformation from a crystalline solid to an isotropic liquid phase. ECD spectra were reproduced by DFT geometry optimizations and time‐dependent DFT (TD‐DFT) calculations, providing ultimate proof of the dominant chirality atmetal in solution.  相似文献   

18.
The concept of orthogonality between halogen and hydrogen bonding, brought out by Ho and coworkers some years ago, has become a widely accepted idea within the chemists’ community. While the original work was based on a common carbonyl oxygen as acceptor for both interactions, we explore here, by means of M06-2X, M11, ωB97X, and ωB97XD/aug-cc-PVTZ DFT calculations, the interdependence of halogen and hydrogen bonding with a shared π-electron system of benzene. The donor groups (specifically NCBr and H2O) were placed on either or the same side of the ring, according to a double T-shaped or a perpendicular geometry, respectively. The results demonstrate that the two interactions with benzene are not strictly independent on each other, therefore outlining that the orthogonality between halogen and hydrogen bonding, intended as energetical independence between the two interactions, should be carefully evaluated according to the specific acceptor group.  相似文献   

19.
During a phytochemical investigation of the unripe fruits of Rubus chingii Hu (i.e., Fructus Rubi, a traditional Chinese medicine named “Fu-Pen-Zi”), a number of highly oxygenated terpenoids were isolated and characterized. These included nine ursane-type (1, 2, and 4–10), five oleanane-type (3, 11–14), and six cucurbitane-type (15–20) triterpenoids, together with five ent-kaurane-type diterpenoids (21–25). Among them, (4R,5R,8R,9R,10R,14S,17S,18S,19R,20R)-2,19α,23-trihydroxy-3-oxo-urs-1,12-dien-28-oic acid (rubusacid A, 1), (2R*,4S*,5R*,8R*,9R*,10R*,14S*,17S*, 18S*,19R*,20R*)-2α,19α,24-trihydroxy-3-oxo-urs-12-en-28-oic acid (rubusacid B, 2), (5R,8R,9R,10R, 14S,17R,18S,19S)-2,19α-dihydroxy-olean-1,12-dien-28-oic acid (rubusacid C, 3), and (3S,5S,8S,9R, 10S,13R,16R)-3α,16α,17-trihydroxy-ent-kaur-2-one (rubusone, 21) were previously undescribed. Their chemical structures and absolute configurations were elucidated on the basis of spectroscopic data and electronic circular dichroism (ECD) analyses. Compounds 1 and 3 are rare naturally occurring pentacyclic triterpenoids featuring a special α,β-unsaturated keto-enol (diosphenol) unit in ring A. Cucurbitacin B (15), cucurbitacin D (16), and 3α,16α,20(R),25-tetrahydroxy-cucurbita-5,23- dien-2,11,22-trione (17) were found to have remarkable inhibitory effects against NF-κB, with IC50 values of 0.08, 0.61, and 1.60 μM, respectively.  相似文献   

20.
In a series of Pt(II) complexes [Pt(dba)(L)] containing the very rigid, dianionic, bis-cyclometalating, tridentate C^N^C2− heterocyclic ligand dba2– (H2dba = dibenzo[c,h]acridine), the coligand (ancillary ligand) L = dmso, PPh3, CNtBu and Me2Imd (N,N’-dimethylimidazolydene) was varied in order to improve its luminescence properties. Beginning with the previously reported dmso complex, we synthesized the PPh3, CNtBu and Me2Imd derivatives and characterized them by elemental analysis, 1H (and 31P) NMR spectroscopy and MS. Cyclic voltammetry showed partially reversible reduction waves ranging between −1.89 and −2.10 V and increasing along the series Me2Imd < dmso ≈ PPh3 < CNtBu. With irreversible oxidation waves ranging between 0.55 (L = Me2Imd) and 1.00 V (dmso), the electrochemical gaps range between 2.65 and 2.91 eV while increasing along the series Me2Imd < CNtBu < PPh3 < dmso. All four complexes show in part vibrationally structured long-wavelength absorption bands peaking at around 530 nm. TD-DFT calculated spectra agree quite well with the experimental spectra, with only a slight redshift. The photoluminescence spectra of all four compounds are very similar. In fluid solution at 298 K, they show broad, only partially structured bands, with maxima at around 590 nm, while in frozen glassy matrices at 77 K, slightly blue-shifted (~580 nm) bands with clear vibronic progressions were found. The photoluminescence quantum yields ΦL ranged between 0.04 and 0.24, at 298 K, and between 0.80 and 0.90 at 77 K. The lifetimes τ at 298 K ranged between 60 and 14040 ns in Ar-purged solutions and increased from 17 to 43 µs at 77 K. The TD-DFT calculated emission spectra are in excellent agreement with the experimental findings. In terms of high ΦL and long τ, the dmso and PPh3 complexes outperform the CNtBu and Me2Imd derivatives. This is remarkable in view of the higher ligand strength of Me2Imd, compared with all other coligands, as concluded from the electrochemical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号