首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powders and thin coatings of ceria and titania were synthesized from aqueous and solvent-based precursors. Thin coatings were deposited on polished 304 stainless steel coupons by dipping them in the appropriate sol-gel oxide precursors. The coatings were subsequently densified and crystallized at several hundreds of degrees. It was possible to obtain dense titania coatings by applying thin coatings of cerium dioxide prior to titania on stainless steel substrates. Underlayer ceria coatings proved to be pivotal in obtaining dense titania coatings and preserving the integrity of the stainless steel while going through the high temperature treatments. The effect of processing parameters such as the atmosphere of heat-treatment, and temperature on the microstructure and crystal structure of the films and powders of ceria and titania was investigated. X-ray diffraction was used to identify the crystal structure of films and powders upon heat-treatment. Electrochemical measurements in NaCl, and analytical techniques such as SEM and EDX were used to evaluate the corrosion performance and pitting morphology of coated samples. A composite coating of ceria and titania was able to prevent crevice corrosion and increase the pitting resistance of the 304 stainless steel relative to the uncoated substrate.  相似文献   

2.
Cu-TiO2 nanocomposites were prepared by electrodeposition method onto copper substrate using an acid copper plating bath containing dispersed nanosized TiO2. The composition of codeposited TiO2 nanoparticles in the composite coatings was controlled by the addition of different concentrations of TiO2 nanoparticles in the bath solution. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~32 nm for electrodeposited copper and ~33 nm for Cu-TiO2 composite coatings. The crystallite structure was fcc for electrodeposited copper and Cu-TiO2 nanocomposite coatings. The surface morphology and composition of the nanocomposites were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy analysis. The effect of TiO2 content on the corrosion and wear resistance properties of the nanocomposite coatings was also presented. The codeposited TiO2 nanoparticles in the deposit increased the corrosion and wear resistance, which were closely related with TiO2 content in the nanocomposites. The wear resistance and microhardness of the Cu-TiO2 nanocomposite coatings were higher than electrodeposited copper. The corrosion resistance property of the electrodeposited copper and Cu-TiO2 nanocomposite coatings was evaluated by electrochemical impedance and Tafel polarization studies. Cu-TiO2 composite coatings were more corrosion resistant than electrodeposited copper.  相似文献   

3.
The Cu–P and Cu–P–SiC composite coatings on carbon steel substrates were deposited via electroless plating. The anti-corrosion properties of Cu–P and Cu–P–SiC coatings were studied in 3.5% NaCl solution. The anti-corrosion properties of Cu–P and Cu–P–SiC coatings were investigated in 3.5% NaCl solution by the weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. It has been found that the shift in the corrosion potential (Ecorr) towards the noble direction, decrease in the corrosion current density (Icorr), increase in the charge transfer resistance (Rct) and decrease in the double layer capacitance (Cdl) values indicated an improvement in corrosion resistance with the incorporation of SiC particles in the Cu–P matrix. The effects of varying the SiC concentration on the corrosion resistance of carbon steel were investigated and it was found that the best anti-corrosion property of Cu–P–SiC is at 5 g L?1 SiC in the bath formulation.  相似文献   

4.
The corrosion behavior and surface morphology of Ni–SiC composite coatings produced by electrodeposition with the aid of magnetic field were studied. The results of the electrochemical analysis including polarization resistance and potentiodynamic polarization curves showed that a magnetic field of 0.1 T could significantly improve the corrosion resistance of the composite. The electrochemical impedance spectra revealed that a passive layer was formed on the surface of the Ni–SiC coating with the magnetic field. The microstructures of electrodeposited Ni–SiC composite coatings were also examined. More SiC particles were found to be incorporated into the coating with the presence of magnetic field, which was considered to be one of the reasons for the enhancement of corrosion resistance as SiC particles were reported to be corrosion inhibitors. Contribution to special issue “Magnetic field effects in Electrochemistry”  相似文献   

5.
研究硫酸铜镀液中浓度对Ni-Cu-P合金镀层的成分、组织结构及耐腐蚀性能的影响.EPMA、XRD和极化曲线镀层测试表明,以浓度为0.5g.L-1的硫酸铜作镀液镀层的耐蚀性能最优.在天然气冷凝液中考察了Ni-Cu-P、Ni-P合金镀层和铜基体的电化学耐腐蚀性能,Ni-Cu-P合金镀层的自腐蚀电位低,自腐蚀电流密度小,交流阻抗值最大.因此该镀层可作为铜质燃气冷凝换热器的耐蚀阻挡层和牺牲阳极保护镀层,防止铜管腐蚀穿孔,有效地延长铜质冷凝换热器的使用寿命.  相似文献   

6.
Electrochemically deposited Zn–Co alloys under various deposition conditions were investigated using anodic linear sweep voltammetry for phase structure determination, scanning electron microscopy for surface morphology analysis, atomic absorption spectroscopy for determination of chemical composition, and polarization measurements and open circuit potential measurements for determination of corrosion properties. The influence of deposition current density, temperature, and composition of deposition solution on the phase structure and corrosion properties of Zn–Co alloys was studied. It was shown that the ratio of cobalt to zinc ions in the plating bath strongly affects the chemical content and phase structure, as well as corrosion stability, of Zn–Co alloys. Zn–Co alloys deposited from plating baths with the lowest and the highest ratios of cobalt and zinc ions exhibited the lowest corrosion rate.  相似文献   

7.
Hybrid coatings based on organically modified silicate (Ormosil)/ZrO2 (0–1.0 wt %) and Ormosil/MO2 (M = Ti or Ce) were synthesized through a sol–gel technique. Tetraethylenepentamine, 3‐glycidoxypropyltrimethoxysilane, tetraethoxysilane, and MO2 (M = Zr, Ti, or Ce) metallic particle were used as precursors for the hybrid coatings. These hybrid films were deposited via spin coating onto an aluminum alloy to improve the corrosion protection. The effects induced by the ZrO2 content and the metallic particle type on the chain dynamics, thermal stability, and corrosion performance of the coated samples were investigated. The rotating‐frame spin–lattice relaxation times and scale of the spin–diffusion path length indicated that the configuration of the hybrid films was highly crosslinked and dense and adhered to the aluminum alloy substrates. The thermal stability and the apparent activation energy, evaluated by van Krevelen's method, of the hybrid coatings depended on the ZrO2 content and on the metallic particle type. Potentiodynamic and salt‐spray analysis revealed that the hybrid films provided exceptional barrier and corrosion protection in comparison with untreated aluminum alloy substrates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 335–342, 2006  相似文献   

8.
A phosphorized polyaniline (PANI) doped with phytic acid (PhA) was synthesized by the chemical oxide method with PhA as a dopant and applied to improve the anticorrosion properties of magnesium-lithium (Mg-Li) alloys after blending with eco-friendly silane sol. The chemical structures and morphologies of PANI samples were evaluated by FTIR spectroscopy, UV-Vis-NIR spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). All characterizations indicate that the as-synthesized phosphorized PANI (PANI-PhA) exists in doped emeraldine salt state with net-like structures crosslinked by phosphate carboxyl groups. The conductivity and thermostability of PANI-PhA were better than those of PANI doped with phosphoric acid (PANI-H3PO4) and undoped PANI. The anticorrosion properties of PANI/silane sol composite coatings for Mg-Li alloy were tested by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results prove that the anticorrosion ability of PANI-PhA is the best among the three PANI samples, as shown by a low corrosion current (1.28 × 10?7 A·cm?2) and high impedance (5.62 × 106 Ω·cm2). The possible anticorrosion mechanism was proposed based on procedure analysis.  相似文献   

9.
Ultra‐high molecular weight polyethylene (UHMWPE)/graphene‐nanosheet (GN, multiple layers of graphene sheets with the thickness of ~5–10 nm) coatings have been deposited by flame spraying. The structure of UHMWPE remained almost intact after the spray processing and addition of GNs resulted in a slightly decreased crystallinity and improved thermal stability of UHMWPE. In addition, the coating containing 1.0 wt.% GNs exhibited a reduction of ~20% in wear rate and 25% in friction coefficient (0.18 versus 0.24). Significantly enhanced anti‐corrosion performances of the UHMWPE–GN coatings were suggested by increased corrosion potential, corrosion current density, and impedance modulus value of the UHMWPE–GN coatings. The very well retained GNs are located mainly at the interfaces between UHMWPE splats and act as bridges connecting the splats, which mainly accounts for the enhanced properties of the composite coatings. The novel UHMWPE–graphene composite coatings show great potential for protecting engineering components for applications against corrosion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
本实验采用乙二醇甲基丙烯酸酯磷酸酯(HEMAP)作为共聚功能单体,与交联功能单体N-(异丁氧基)甲基丙烯酰胺、丙烯酸、甲基丙烯酸甲酯等在可聚合型表面活性剂作用下通过乳液聚合法合成了磷酸酯改性丙烯酸酯乳液体系.通过粒径分析仪、红外光谱仪、热失重分析仪、电化学工作站、耐盐雾试验机等重点探讨不同含量HEMAP对乳液及涂层的粒...  相似文献   

11.
The present work reports the results obtained for the electrodeposition of composite Zn coatings on steel by using Ti and Ce oxides nanopowders, separately or in mixture, and a TiO2·CeO2 binary oxide. In an attempt to correlate the effects of nanoparticles on corrosion behavior of the composite deposits, the properties of Zn–TiO2·CeO2 layers were compared with those referring to similar coatings prepared by using a simple mixture of the two oxides or individual oxides. Corrosion measurements were performed in 0.2 g?L?1 Na2SO4 solution (pH?=?5). The results of electrochemical measurements (open circuit potential measurements, polarization curves, and electrochemical impedance spectroscopy) were corroborated with those obtained by using X-ray diffraction, atomic force microscopy, scanning electron microscopy, and salt spray tests. The results indicate that the composite Zn–(TiO2?+?CeO2) coatings exhibit the highest corrosion resistance from all investigated Zn coatings.  相似文献   

12.
Organically modified silicate (Ormosil) coatings have been synthesized through the sol–gel method for corrosion protection of aluminum alloy. Silica-based unmodified coatings were also designed to investigate the effect of tetraethoxysilane (TEOS) content on the properties of the coatings. The surface morphology of the coatings was characterized by scanning electron microscopy. The corrosion resistance was evaluated by immersion test, electrochemical impedance spectroscopy and potentiodynamic polarization measurements. In addition, the surface potential differences of the coated samples were determined by scanning Kelvin probe. The results showed that a better corrosion resistance of unmodified coating was prepared by controlling the TEOS/EtOH/H2O molar ratio of 0.109/1/1.52. Ormosil coatings provided excellent barrier properties and corrosion resistance in comparison with the unmodified sol–gel coatings. The Ormosil coating modified with triethoxyoctylsilane exhibited corrosion resistance properties superior to the other Ormosil coatings after exposure to 3.5 wt% NaCl solution for 10 days.  相似文献   

13.
Nickel was deposited on a copper substrate from aqueous and nonaqueous ethanol electrolytes. X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and chronovoltametry, scanning electron microscopy, and atomic force microscopy were used to study the effect of the solvent on the surface and corrosion properties of the Ni coatings formed. Unifom and relatively smooth Ni films were obtained as measured with microscopy techniques. The formation of a passive film in acidic, alkaline, and neutral chloride-containing media was confirmed with X-ray photoelectron spectroscopy. The water-based nickel-plating electrolyte makes it possible to deposit coatings with higher corrosion resistance as compared with coatings deposited from ethanol electrolyte in NaOH and NaCl media. The proposed mechanism of corrosion in a 0.5 M H2SO4 solution involves cycles of active-passive surface behavior due to its passivation by corrosion products.  相似文献   

14.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Superhydrophobic ceria on the aluminum substrate was fabricated, and its corrosion resistance was investigated by different techniques. For example, the so‐obtained superhydrophobic sample was immersed into the NaCl aqueous solution, and the variations in the surface wettability as well as the surface morphology were monitored; potentiodynamic polarization in the NaCl aqueous solution was adopted to evaluate its electrochemical corrosion resistance; a droplet of the aqueous solution HCl was dripped onto the superhydrophobic surface, and the corrosion process as well as the surface morphology after corrosion was monitored. The experimental results showed that the superhydrophobic ceria possessed a good corrosion resistance because of the entrapped air in the solid/liquid interface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Pure zinc and Zn–MoS2 composite coatings were prepared by electrodeposition from zinc sulfate–chloride bath containing uniformly dispersed MoS2 nanoparticles. The effect of MoS2 on the deposition properties morphology, crystallographic orientation, and corrosion behavior were studied. The electrokinetic properties (zeta potential) and size distribution statistics in plating bath for the particles were evaluated using dynamic light scattering experiments. The Zn and Zn–MoS2 deposition process was studied by linear polarization and cyclic voltammetry. Scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction analysis, and potentiodynamic polarization measurements were used to characterize the coatings. The addition of MoS2 to the electrolyte significantly changed the microstructure and crystallographic orientation of the zinc deposits and enhanced the corrosion resistance of the coatings. The morphological and electrochemical properties of the zinc coatings were observed to be significantly affected by the incorporation of MoS2 particles into the zinc matrix.  相似文献   

17.
Electroless Ni–P and Ni–P–TiCN composite coatings have been deposited successfully on Al substrates. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) techniques were applied to study the surface morphology and the chemical composition of the deposited films. Moreover, X‐ray diffraction (XRD) proved that Ni–P and Ni–P–TiCN deposits have amorphous structures. The properties of Ni–P–TiCN/Al composite films such as hardness, corrosion resistance and electrocatalytic activity were examined and compared with that of Ni–P/Al film. The results of hardness measurements reveal that the presence of TiCN particles with Ni–P matrix improves its hardness. Additionally, the performance against corrosion was examined using Tafel lines and electrochemical impedance spectroscopy techniques in both of 0.6 M NaCl and a mixture of 0.5 M H2SO4 with 2 ppm HF solutions. The results indicate that the incorporation of high dispersed TiCN particles into Ni–P matrix led to a positive shift of the corrosion potential and an increase in the corrosion resistance for all aluminum substrates after their coating with Ni–P–TiCN. In addition, Ni–P–TiCN/Al electrodes showed a higher electrochemical catalytic activity and stability toward methanol oxidation in 0.5 M NaOH solution compared with that of Ni–P/Al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Silica antireflective coatings modified by hexamethyldisilazane (HMDS) were deposited on clean substrates (silicon wafer or K9 glass blanks) by sol–gel processing. The effects of HMDS on the contamination resistant capability and laser-induced damage threshold (LIDT) of coatings were investigated. Transmission electron microscopy revealed that a stable sol with uniformly distributed silica particles with an average particle size of about 15 nm was acquired by adding appropriate amount of HMDS into the standard SiO2 sol. With the modified sol the resultant coatings were hydrophobic and the contact angle for water increased with increasing amount of HMDS in the reaction mixture. Such increase in hydrophobicity was not the result of surface roughness. The antireflective properties were retained after HMDS-treatment and the maximum transmission values were above 99 %. The introduction of HMDS into silica sols had also increased the LIDT of coatings from 24.3 to 37.0 J cm?2 when the molar ratio of HMDS to tetraethoxysilane was 0.05:1. The increase in LIDT was attributed to the decrease of nodular defect and uniform microstructures of coatings as an effect of the HMDS modification. After some of the hydroxyl groups on the surface of the SiO2 particle were replaced by methyl groups, from which the SiO2 particle gained a water-repellent surface, the stability of coatings in vacuum was increased. The maximum transmission values of modified coatings decreased by only 0.25 % after storage under vacuum for 168 h. In contrast, the standard sol–gel silica coatings decreased about 2 % under similar conditions. The LIDT of modified coatings remained as high as 30.8 J cm?2, more than that of standard coatings stored for the same duration in air.  相似文献   

19.
Nanostructured cobalt (Co) and cobalt-iron (CoFe) alloy coatings were electrodeposited from sulfate solutions in the presence and absence of saccharin. The effects of saccharin on the corrosion behavior of Co and CoFe alloy coatings were investigated using the electrochemical quartz crystal microbalance (EQCM) technique coupled with cyclic voltammetry (CV) measurements. Saccharin was added to the electrolyte as a grain refiner and brightener. Interestingly, opposite corrosion behaviors were found for all nanostructured coatings in 0.1 M H2SO4 and 0.1 M NaOH. The use of saccharin as an additive in the plating solution accelerated the anodic reaction for all deposits in acidic medium. The mass decreases while dissolution rate increased with higher saccharin concentration. Meanwhile, formation of a thick passive film on the Co electrode surface were enhanced while a hindering effect was observed for CoFe alloy coatings deposited in the presence of saccharin in alkaline solution. The anodic and cathodic curves obtained from potentiodynamic polarization experiments were also in agreement with the EQCM results.  相似文献   

20.
The production of eco-friendly hybrid sol–gel coatings for long term protection of metallic substrates from aggressive environments was one of the emerging areas, competing with conventional chromate and phosphate coatings. Herein, a nanocomposite has been synthesized from TiO2 and PVA through a novel sol-gel route and the structure and morphology of the same was characterized using X-ray diffraction, FTIR, UV–Vis spectroscopy, FESEM with EDAX, and AFM studies. The flower-like structured composite offers excellent corrosion protection properties in NaCl solution of sea water salinity. Impedance and polarization studies were carried out to monitor the anticorrosion performance of the materials coating. This coating on mild steel offers 98% inhibition efficiency in NaCl. The influence of loading PVA on TiO2 and its effect on corrosion efficiency have also been investigated. It is found that an optimum weight of 20 wt% PVA is required in the composite for beneficial corrosion resistance. 92% inhibition efficiency is registered by the coated MS in NaCl solution after 40 days of exposure and is quite encouraging compared to many of the recent reports. The Ti–O–Ti, and Fe-Ti-O linkage along with compactness and adherence of the material together contribute to better blocking of steel corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号