共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional materials with rational organization cannot be directly created only by nanotechnology‐related top‐down approaches. For this purpose, a novel research paradigm next to nanotechnology has to be established to create functional materials on the basis of deep nanotechnology knowledge. This task can be assigned to an emerging concept, nanoarchitectonics. In the nanoarchitectonics approaches, functional materials are architected through combination of atom/molecular manipulation, organic chemical synthesis, self‐assembly and related spontaneous processes, field‐applied assembly, micro/nano fabrications, and bio‐related processes. In this short review article, nanoarchitectonics‐related approaches on materials fabrications and functions are exemplified from atom‐scale to living creature level. Based on their features, unsolved problems for future developments of the nanoarchitectonics concept are finally discussed. 相似文献
2.
Katsuhiko Ariga Xiaofang Jia Jingwen Song Jonathan P. Hill David Tai Leong Yi Jia Junbai Li 《Angewandte Chemie (International ed. in English)》2020,59(36):15424-15446
Incorporation of non‐equilibrium actions in the sequence of self‐assembly processes would be an effective means to establish bio‐like high functionality hierarchical assemblies. As a novel methodology beyond self‐assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio‐process, has been applied to this strategy. The application of non‐equilibrium factors to conventional self‐assembly processes is discussed on the basis of examples of directed assembly, Langmuir–Blodgett assembly, and layer‐by‐layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio‐active components such as proteins or by the combination of bio‐components and two‐dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self‐assembly for creation of bio‐like higher functionalities and hierarchical structural organization. 相似文献
3.
As an emerging concept for the development of new materials with nanoscale features, nanoarchitectonics has received significant recent attention. Among the various approaches that have been developed in this area, the fixed‐direction construction of functional materials, such as layered fabrication, offers a helpful starting point to demonstrate the huge potential of nanoarchitectonics. In particular, the combination of nanoarchitectonics with layer‐by‐layer (LbL) assembly and a large degree of freedom in component availability and technical applicability would offer significant benefits to the fabrication of functional materials. In this Minireview, recent progress in LbL assembly is briefly summarized. After introducing the basics of LbL assembly, recent advances in LbL research are discussed, categorized according to physical, chemical, and biological innovations, along with the fabrication of hierarchical structures. Examples of LbL assemblies with graphene oxide are also described to demonstrate the broad applicability of LbL assembly, even with a fixed material. 相似文献
4.
二维有机组装体是一类具有特殊形貌和性质的有序结构, 有可能带来新功能和光电子领域的潜在应用, 但如何实现二维有机组装体的可控制备是尚待解决的问题. 针对这一问题, 我们通过对构筑基元的理性设计, 调控分子间的相互作用, 发展了三种可控制备二维有机组装体的新方法: (1)利用疏水有机阴离子作为Bola型两亲分子的抗衡离子, 能够削弱亲水头基间的静电排斥作用, 从而诱导两亲分子的组装结构从一维向二维转变; (2)基于非共价键形成超两亲分子, 通过设计和控制超两亲分子的拓扑结构, 简便有效地实现二维组装体的制备; (3)通过共价修饰或引入新的非共价键, 以限制三维结构在某一方向上的生长, 从而降低三维结构的维度, 也能实现二维组装体的可控制备. 未来, 上述研究有望进一步拓展, 并实现功能二维有机组装体的构筑. 相似文献
5.
6.
7.
二维材料凭借其独特的电学、光学、磁学等性质引起了广泛关注,如何处理二维材料使其改性是目前的研究热点。 插层方法是目前调控二维材料性质的主要方法之一。 插层过程中,客体粒子插入主体材料的范德华层间,造成二维材料物理与化学性质的变化。 气相、液相、固相插层均可以使二维材料的性质得到提升。 本文主要介绍二维材料插层方法,分析其不同优势和限制条件,并展望如何综合应用插层方法更好地提升二维材料电学、光学等性能。 相似文献
8.
9.
微透析中空纤维膜接口的制作及其在二维毛细管电泳联用中的应用 总被引:4,自引:0,他引:4
提出了一种微透析中空纤维膜的制备方法,并用该微透析中空纤维膜作为接口构建了一套新型的二维毛细管电泳分离技术平台。中空纤维膜接口具有制作过程简易、传质效率高、柱间切换方便、分析速度快等优点,它是目前二维及多维电泳联用中一种较为新型、方便、理想的接口。以血红蛋白样品为例,通过实验验证了该接口在二维毛细管电泳联用系统中的可行性和分离效能。实验结果表明:整个血红蛋白样品二维分离分析的时间在1 h内完成,二维分离系统的分辨率和总峰容量都比各自一维的高。 相似文献
10.
11.
Ting Xu Danyang Yu Zhiling Du Dr. Wenhuan Huang Prof. Xing Lu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(47):10811-10816
Porous carbon materials rich in defects are promising candidates in energy storage and conversion applications. Herein, a facile template-free approach is reported for the synthesis of a two-dimensional (2 D) mesoporous carbon material derived from fullerene (C60) microsheets (FMSs) through simple heat treatment. The sample obtained at 1000 °C (FMS1000) shows a large surface area of 1507.6 m2 g−1 owing to the presence of mesopores and rich defects, which promote electron and mass transfer in the electrocatalytic process of the oxygen reduction reaction (ORR), showing an excellent performance with an onset potential of 0.95 V, a half-wave potential of 0.85 V, and long-term durability of 2000 cycles, comparable to the performance of commercial Pt/C. Moreover, FMS1000 displays a remarkable supercapacitive property with a specific capacitance of 330.7 F g−1 at 0.2 A g−1 and good long-term stability with a capacitance retention of 97 % over 50 000 cycles. Thus, a practical strategy for the production of mesoporous carbon materials with different morphological structures and porous defects as high-performance energy materials is advanced. 相似文献
12.
13.
We observed the unusual crystal transformation from solid AgNO3 to Ag(I)-encapsulated fullerene (C60) microcrystal by a coordination-driven crystallization, when casting C60 solution on AgNO3 crystal. The strong binding of Ag+-C60 ruptures electrostatic interactions within AgNO3 lattice, forming a binary hybrid material, which was characterized by XRD, Raman spectroscopy and mass spectrometry. Our results support the fact that AgNO3 crystal can directly interact with fullerene C60 molecules, other than through solvated metal cations. Two major factors, namely sturdy Ag+-olefin interaction and an enclosed cage effect play the dominating roles in crystal transformation. Adding to the regular solution-based crystallization, this facial protocol is expected to render an additional dimension in fabrication of exohedral metallofullerene architecture, regardless of solubility of metal cation in anti-solvent. 相似文献
14.
Mian Hasnain Nawaz Sara Riaz Feng Liu 《Journal of Dispersion Science and Technology》2014,35(5):753-756
Atomic force microscopic studies have been conducted for insight into the morphological aspects of monochelic porphyrin and fullerene complexes forming fibrils of continuous nature. Alternating dark and bright segments could be envisioned clearly, as individual porphyrin-fullerene repeating units. These fibrils also caused a remarkable red shift in the soret band absorption of porphyrin. Dynamic light scattering analysis was also conducted under different solvent conditions, which showed the swelling of fibrils when the solvent was changed from THF to water. 相似文献
15.
The growing number of studies and interest in two-dimensional (2D) materials has not yet resulted in a wide range of material applications. This is a result of difficulties in getting the properties, which are often determined through numerical experiments or through first-principles predictions, both of which require lots of time and resources. Here we provide a general machine learning (ML) model that works incredibly well as a predictor for a variety of electronic and structural properties such as band gap, fermi level, work function, total energy and area of unit cell for a wide range of 2D materials derived from the Computational 2D Materials Database (C2DB). Our predicted model for classification of samples works extraordinarily well and gives an accuracy of around 99 %. We are able to successfully decrease the number of studied features by employing a strict permutation-based feature selection method along with the sure independence screening and sparsifying operator (SISSO), which further supports the design recommendations for the identification of novel 2D materials with the desired properties. 相似文献
16.
由于石墨烯等二维材料具有独特的结构与优异的性能,其在众多新型电子器件的构建中具有重要的应用前景。然而,其可控生长仍然存在诸多挑战性的问题,这也是制约这类明星材料真正迈向应用的瓶颈所在。化学气相沉积法(CVD)是目前可控制备高质量石墨烯最有效的方法,其中催化基底的设计尤为重要,这将直接决定CVD最为核心的两个过程:催化和传质。相较于改变催化剂的化学组成,近年来我们发现改变催化剂的物态——由固态到液态,对石墨烯等二维材料的CVD过程有质的改变和提升。与固态基底相比,液态基底具有更松散的原子排列、更剧烈的原子迁移,使得液面平滑而各向同性,液相可流动且可包埋异质原子。这使得液态金属在催化石墨烯等二维材料及其异质结生长时表现出很多独特的行为,比如层数严格自限制、超快的生长速度、晶粒拼接平滑等。更重要的是,基底的液态特性给二维材料的自组装和转移带来了突破,实乃二维材料的点金石。本文将梳理液态金属催化剂上二维材料的生长、组装与转移行为,这些关键技术的突破将为二维材料迈向真正应用奠定坚实的基础。 相似文献
17.
Dr. Carmen C. Piras Prof. Dr. David K. Smith 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(48):11318-11326
A two-component self-sorting hydrogel based on acylhydrazide and carboxylic acid derivatives of 1,3:2,4-dibenzylidene-d -sorbitol (DBS-CONHNH2 and DBS-COOH) is reported. A heating–cooling cycle induces the self-assembly of DBS-CONHNH2, followed by the self-assembly of DBS-COOH induced by decreasing pH. Although the networks are formed sequentially, there is spectroscopic evidence of interactions between them, which impact on the mechanical properties and significantly enhance the ability of these low-molecular-weight gelators (LMWGs) to form gels when mixed. The DBS-COOH network can be switched “off” and “on” within the two-component gel through a pH change. By using a photo-acid generator, the two-component gel can be prepared combining the thermal trigger with photo-irradiation. Photo-patterned self-assembly of DBS-COOH within a pre-formed DBS-CONHNH2 gel under a mask yields spatially controlled multi-domain gels. Different gel domains can have different functions, for example, controlling the rate of release of heparin incorporated into the gel, or directing gold nanoparticle assembly. Such photo-patterned multi-component hydrogels have potential applications in regenerative medicine or bio-nano-electronics. 相似文献
18.
半导体光生电荷分离是光催化过程中的关键步骤之一,其效率极大地影响了最终光催化性能.将TiO2纳米片与石墨烯复合,能够促进TiO2中光生电子和空穴的分离,从而提高其光催化活性.为了研究光生电荷的分离对TiO2/石墨烯复合材料光催化性能的影响,通过调控TiO2纳米片的尺寸来调节TiO2/石墨烯复合材料中光生电荷分离的能力,然后研究其对TiO2/石墨烯复合材料光催化性能的影响.合成了一系列不同厚度的TiO2纳米片,将其与石墨烯复合,并通过光沉积负载Pt纳米颗粒作为助催化剂,用于光催化产氢.实验结果显示,随着TiO2纳米片厚度减小,其与石墨烯形成的复合结构的光催化性能显著提高.这主要是由于TiO2纳米片厚度减小时,光生电子沿厚度方向穿过TiO2纳米片迁移到石墨烯的距离缩短,从而减少了光生电子在迁移过程中与空穴的复合;同时TiO2纳米片厚度减小使其比表面积增大,使得TiO2/石墨烯界面面积增大,从而使石墨烯更好地分离出TiO2中的光生电子,有更多的光生电子到达石墨烯参与催化反应,提高TiO2/石墨烯复合材料的光催化性能.此研究表明通过控制TiO2纳米片的尺寸来调控TiO2/石墨烯复合材料中光生电子和空穴的分离,是显著提高其光催化性能的有效途径. 相似文献
19.
Two-dimensional (2D) materials possess nanoscale thickness with large aspect ratios on the other two dimensions. The ultrahigh surface-to-volume ratio of 2D materials is the most important property different from their bulk counterparts, and is beneficial for mass and heat transport, and ion diffusion. Among the various 2D materials, carbon-based materials have attracted tremendous attentions since the first explosive research on graphene. Therefore, they provide opportunities for applications in adsorption, catalysis, and electrical energy storage. The porous structure of such carbon materials is a key influence on the properties of these 2D materials. This review focuses on recent developments in synthesis strategies for 2D carbon-based materials, especially the preparation of carbon nanosheets and carbon-inorganic hybrids/composites nanosheets. The main factors influencing the porous structure of the material are discussed for each method. Applications of the materials are introduced, mainly in the fields of adsorption, heterogeneous catalysis, and electrical energy storage. Finally, the leading-edge issues of novel 2D carbon-based materials for the future are discussed. 相似文献
20.
采用脉冲激光轰击浸于流动C60 /正己烷溶液中的铜靶,获得表面为C60修饰的铜团簇(Cu-C60)。UV-Vis发现(Cu-C60)/正已烷溶胶中C60的特征吸收峰值下降,在195~240 nm之间出现了增强的铜溶胶特征吸收带;荧光光谱表明C60增强了铜溶胶的荧光强度,意味着C60修饰铜团簇使其表面电子浓度增加或离域范围扩大;TG-DSC分析表明样品在50~1 000 ℃之间的5个失重区和1个增重区中,680~960 ℃区间的失重对应于C60失重;XRD结果显示样品呈衍射峰峰值变小、峰宽变大的典型纳米铜特征,其表面修饰物为非晶态;元素分析得样品中Cu、C和H质量分数分别为64.82%、31.44%和1.60%,此外还有少量O和N,表明其中主要是C60修饰的铜团簇;VSM的M-T曲线显示样品在203 K处有一居里转变点,表明采用PLA/ISFL方法, 在具有高温、高压和超高速剧冷微区的特殊条件下C60对铜团簇的修饰对(Cu-C60)杂化材料的磁学特性有明显的影响。 相似文献