共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Organic solar cells have made rapid progress in the last two decades due to the innovation of conjugated materials and photovoltaic devices. Microphase separation that connects with materials and devices plays a crucial role in the charge generation process. In this account, we summary our recent works of developing new crystalline conjugated polymers to control the microphase separation in thin films in order to realize high performance in solar cells, including crystalline diketopyrrolopyrrole‐based donor polymers, perylene bisimide‐based electron acceptors, and “double‐cable” conjugated polymers that contain covalently‐linked crystalline donor and acceptor in one material for single‐component organic solar cells. 相似文献
3.
Organic dyes with ethoxy‐substituted oligo‐phenylenevinylene as chromophores were synthesized for dye‐sensitized solar cells (DSSCs), and the detailed relationships between the dye structures, photophysical properties, electrochemical properties, and performances of DSSCs were described. The dye S3O showed broad IPCE spectra in the spectral range of 350–750 nm, and the dye S1P showed solar energy‐to‐electricity conversion efficiency (() of up to 4.23% under AM 1.5 irradiation (100 mW/cm2) in comparison with the reference Ru‐complex (N719 dye) with an η value of 5.90% under similar experimental conditions. 相似文献
4.
Lei Yang Wenxing Gu Lei Lv Yusheng Chen Yufei Yang Pan Ye Jianfei Wu Ling Hong Dr. Aidong Peng Prof. Hui Huang 《Angewandte Chemie (International ed. in English)》2018,57(4):1096-1102
Triplet materials have been employed to achieve high‐performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non‐fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene‐based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. 相似文献
5.
Dye‐sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO2, ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident‐solar‐light‐to‐electricity conversion efficiency and low cost of production. To develop high‐performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light‐harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch‐making molecular design of organic dyes for high photovoltaic performance and long‐term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far. 相似文献
6.
The first main‐chain conjugated copolymers based on alternating spiropyran (SP) and 9,9‐dioctylfluorene (F8) units synthesized via Suzuki polycondensation (SPC) are presented. The reaction conditions of SPC are optimized to obtain materials of type P(para‐SP‐F8) with appreciably high molecular weights up to M w ≈ 100 kg mol−1. 13C NMR is used to identify the random orientation of the non‐symmetric SP unit in P(p‐SP‐F8). Ultrasound‐induced isomerization of P(p‐SP‐F8) to the corresponding merocyanine form P(p‐MC‐F8) yields a deep‐red solution. This isomerization reaction is followed by 1H NMR in solution using sonication, whereby the color increasingly changes to deep red. The possibility to incorporate multiple SP units into main‐chain polymers significantly broadens existing SP‐based polymeric architectures. 相似文献
7.
8.
9.
10.
11.
Structural Control of Hierarchically‐Ordered TiO2 Films by Water for Dye‐Sensitized Solar Cells 下载免费PDF全文
Sung Hoon Ahn Dong Jun Kim Dr. Dong Kyu Roh Won Seok Chi Prof. Jong Hak Kim 《Chemphyschem》2014,15(9):1841-1848
A facile way of controlling the structure of TiO2 by changing the amount of water to improve the efficiency of dye‐sensitized solar cells (DSSCs) is reported. Hierarchically ordered TiO2 films with high porosity and good interconnectivity are synthesized in a well‐defined morphological confinement arising from a one‐step self‐assembly of preformed TiO2 (pre‐TiO2) nanocrystals and a graft copolymer, namely poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate). The polymer–solvent interactions in solution, which are tuned by the amount of water, are shown to be a decisive factor in determining TiO2 morphology and device performance. Systematic control of wall and pore size is achieved and enables the bifunctionality of excellent light scattering properties and easy electron transport through the film. These properties are characterized by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency, and electrochemical impedance spectroscopy analyses. The TiO2 photoanode that is prepared with a higher water ratio, [pre‐TiO2]:[H2O]=1:0.3, shows a larger surface area, greater light scattering, and better electron transport, which result in a high efficiency (7.7 %) DSSC with a solid polymerized ionic liquid. This efficiency is much greater than that of commercially available TiO2 paste (4.0 %). 相似文献
12.
Peripherally and Axially Carboxylic Acid Substituted Subphthalocyanines for Dye‐Sensitized Solar Cells 下载免费PDF全文
Dr. Mine Ince Dr. Anaïs Medina Dr. Jun‐Ho Yum Dr. Aswani Yella Dr. Christian G. Claessens Dr. M. Victoria Martínez‐Díaz Prof. Michael Grätzel Dr. Mohammad K. Nazeeruddin Prof. Tomás Torres 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(7):2016-2021
A series of subphthalocyanines (SubPcs) bearing a carboxylic acid group either at the peripheral or axial position have been designed and synthesized to investigate the influence of the COOH group positions on the dye‐sensitized solar cell (DSSC) performance. The DSSC devices based on SubPcs with axially substituted carboxylic acid groups showed low photovoltaic performance, whereas peripherally substituted one exhibited higher power conversion efficiency owing to improved injection from LUMO of SubPcs to the TiO2 conduction band. 相似文献
13.
Dr. Feng‐Rong Dai Dr. Yung‐Chung Chen Lai‐Fan Lai Dr. Wen‐Jun Wu Chao‐Hua Cui Gui‐Ping Tan Xing‐Zhu Wang Prof. Jiann‐T'suen Lin Prof. He Tian Prof. Wai‐Yeung Wong 《化学:亚洲杂志》2012,7(6):1426-1434
Four new unsymmetric platinum(II) bis(aryleneethynylene) derivatives have been designed and synthesized, which showed good light‐harvesting capabilities for application as photosensitizers in dye‐sensitized solar cells (DSSCs). The absorption, electrochemical, time‐dependent density functional theory (TD‐DFT), impedance spectroscopic, and photovoltaic properties of these platinum(II)‐based sensitizers have been fully characterized. The optical and TD‐DFT studies show that the incorporation of a strongly electron‐donating group significantly enhances the absorption abilities of the complexes. The maximum absorption wavelength of these four organometallic dyes can be tuned by various structural modifications of the triphenylamine and/or thiophene electron donor, improving the light absorption range up to 650 nm. The photovoltaic performance of these dyes as photosensitizers in mesoporous TiO2 solar cells was investigated, and a power conversion efficiency as high as 1.57 % was achieved, with an open‐circuit voltage of 0.59 V, short‐circuit current density of 3.63 mA cm?2, and fill factor of 0.73 under simulated AM 1.5G solar illumination. 相似文献
14.
15.
Diketopyrrolopyrrole‐based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices 下载免费PDF全文
Xingxing Chen Zijian Zhang Dr. Zicheng Ding Prof. Jun Liu Prof. Lixiang Wang 《Angewandte Chemie (International ed. in English)》2016,55(35):10376-10380
Conjugated polymers are essential for solution‐processable organic opto‐electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π‐π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near‐infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. 相似文献
16.
Rapid Synthesis of Thiophene‐Based,Organic Dyes for Dye‐Sensitized Solar Cells (DSSCs) by a One‐Pot,Four‐Component Coupling Approach 下载免费PDF全文
Keisuke Matsumura Soichi Yoshizaki Dr. Masato. M. Maitani Prof. Yuji Wada Dr. Yuhei Ogomi Prof. Shuzi Hayase Dr. Tatsuo Kaiho Dr. Shinichiro Fuse Dr. Hiroshi Tanaka Prof. Takashi Takahashi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(27):9742-9747
This one‐pot, four‐component coupling approach (Suzuki–Miyaura coupling/C?H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene‐based organic dyes for dye‐sensitized solar cells (DSSCs). Seven thiophene‐based, organic dyes of various donor structures with/without the use of a 3,4‐ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one‐pot, 3‐step, 35–61 %). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short‐circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open‐circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n‐hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2–5.6 %). 相似文献
17.
Amaresh Mishra Dr. Markus K. R. Fischer Dipl.‐Chem. Peter Bäuerle Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(14):2474-2499
Works without ruthenium as well : Dye‐sensitized solar cells (DSSCs) incorporating metal‐free organic dyes have been considerably improved in recent years. Various design strategies have been established and are employed successfully in the synthesis of novel sensitizers. In this Review, structure–property–efficiency correlations are deduced from a vast number of dyes, which should help to design new and highly efficient sensitizers.
18.
19.
Prof. Qinqin Shi Jianfei Wu Xiaoxi Wu Prof. Aidong Peng Prof. Hui Huang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(55):12510-12522
In recent decades, non-fullerene acceptors (NFAs) are undergoing rapid development and emerging as a hot area in the field of organic solar cells. Among the high-performance non-fullerene acceptors, aromatic diimide-based electron acceptors remain to be highly promising systems. This review discusses the important progress of perylene diimide (PDI)-based polymers as non-fullerene acceptors in all-polymer solar cells (all-PSCs) since 2014. The relationship between structure and property, matching aspects between donors and acceptors, and device fabrications are unveiled from a synthetic chemist perspective. 相似文献
20.
Yung‐Chung Chen Hsien‐Hsin Chou Ming Chih Tsai Sheng‐Yu Chen Jiann T. Lin Ching‐Fa Yao Kellen Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(17):5430-5437
New dipolar sensitizers containing an ethyl thieno[3,4‐b]thiophene‐2‐carboxylate (ETTC) entity in the conjugated spacer have been synthesized in two isomeric forms. These compounds were used as the sensitizers of n‐type dye‐sensitized solar cells (DSSCs). The best conversion efficiency (5.31 %) reaches approximately 70 % of the N719‐based (7.41 %) DSSC fabricated and measured under similar conditions. The ETTC‐containing compounds exhibit a bathochromic shift of the absorption compared to their thiophene congeners due to the quinoid effect, however, charge‐trapping at the ester group of ETTC was found to jeopardize the electron injection and lower the cell efficiency. Charge trapping is alleviated as the ester group of ETTC is replaced with a hydrogen atom, as evidenced from the theoretical computation. 相似文献