首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary: A simple route to an ordered array of metal/semiconductor oxide composite nanodots is presented. Micellar monolayer films of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) loaded with HAuCl4 in the P2VP nanodomains are used as templates. TiO2 is generated selectively within the polar P2VP domains of PS‐b‐P2VP/HAuCl4 films by chemical vapor deposition of TiCl4. Subsequent removal of the organic matrix by oxygen plasma or UV light leads to an array of Au/TiO2 composite nanoparticles on the substrate surface.

Schematic illustration of the process to fabricate an array of Au/titania composite nanodots.  相似文献   


2.
Complex micelles were obtained from PS‐b‐PNIPAM‐b‐PAA micelles and PEG‐b‐P4VP block copolymers via the strong electrostatic interaction and hydrogen bonding between PAA and P4VP blocks in water. The PS block formed the core and the PAA/P4VP complex shell functioned as a semi‐permeable membrane which could control the permeation of small molecules. Between the core and shell, the large fluid‐filled space that was formed with the thermoresponsive PNIPAM gel could retain the loaded drug for a long period of time. With increasing temperature, the shrinkage of the PNIPAM coils pumped the drug out of the complex micelles. The complex micelles functioned as a contractive “nanopump”, which could potentially be applied as a thermosensitive controlled release system.

  相似文献   


3.
The mixed Langmuir monolayers and Langmuir–Blodgett (LB) films of homo‐polystyrene (h‐PS) and the diblock copolymer polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) have been characterized by the Langmuir monolayer technique and tapping mode atomic force microscopy (AFM), respectively. When the content of h‐PS is below 80 wt.‐%, the mixed LB films of h‐PS/PS‐b‐P2VP mainly exhibit isolated circular nanoaggregates. With a further increase of the h‐PS content (80–95%), however, highly uniform and stable necklace‐network structures are observed in the mixed LB films.

  相似文献   


4.
PS‐b‐PAA spherical micelles with a liquid core and a PAA shell are prepared with the assistance of 1,2‐dichloroethane. During the process of adding a mixture of PNIPAM‐b‐P4VP and PEG‐b‐P4VP, multi‐layered micelles with a mixed corona that consists of both PNIPAM and PEG chains are constructed through the electrostatic interaction and hydrogen bonding between the PAA block and the P4VP block. When heating above the LCST, the PNIPAM chains collapse onto the PAA/P4VP complex layer while the PEG chains still stretch into the solution through the collapsed PNIPAM layer, which leads to the formation of hydrophilic channels around the PEG chains. The ibuprofen encapsulated in the hollow space can diffuse through the channels and its release rate can be controlled by changing the ratio of PEG chains to PNIPAM chains in the corona.

  相似文献   


5.
A variety of sub‐10 nm nanoparticles are successfully prepared by crosslinking of polystyrene‐b‐poly(1,3‐butadiene) (PS‐b‐PB) and polystyrene‐b‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) block copolymer micelles and inverse micelles. Among them, the core‐crosslinked PS‐b‐PB micelles can self‐assemble into ultrathin (< 10 nm) macroporous (pore size <1 µm) membranes in a facile way, i.e., by simply drop‐coating the particle solution onto a mica surface. No continuous/porous membranes are produced from shell‐crosslinked PS‐b‐PB micelles and both forms of PS‐b‐P4VP micelles. This suggests that the unique structure of the block copolymer precursor, including the very flexible core‐forming block and the glassy corona‐forming block and the specific block length ratio, directly determines the formation of the macroporous membrane.

  相似文献   


6.
We report that the nanostructures of poly(styrene‐block‐4‐vinylpyridine) block copolymer (PS‐b‐P4VP) thin film on a wafer substrate can be re‐assembled by sequential vapor treatment using selected solvents. Metal or other inorganic nanoparticles that were randomly pre‐loaded inside or on the surface of PS‐b‐P4VP thin film could be pulled to the rim of PS and P4VP along with the movements of PS and P4VP blocks during the treatment. As a result, the patterned polymeric or inorganic/polymer composite nanoisland and nanoring arrays were fabricated.

  相似文献   


7.
8.
A polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core‐shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell‐embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS‐b‐P2VP hybrid NPs is confirmed by transmission electron microscopy, energy‐dispersive X‐ray, and UV‐Vis absorption.

  相似文献   


9.
Summary: We report the multiple morphologies and their transformation of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in low‐alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre‐shaped large compound micelles, and to sphere‐shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.

Aggregates of PS‐P4VP formed in butanol by quenching from 110 °C to room temperature.  相似文献   


10.
Self‐assembly of poly(2‐vinylpyridine)‐block‐poly(ϵ‐caprolactone) (P2VP‐b‐PCL) diblock copolymer in the presence of a selective solvent is investigated by transmission electron microscopy and atomic force microscopy. Addition of water into a P2VP‐b‐PCL solution in N,N‐dimethylformamide at 20 °C produces elongated truncated lozenge shaped single crystals of uniform size and shape in large quantities. The single crystals are composed of PCL single‐crystal layer sandwiched between two P2VP layers tethered on the top and bottom basal surfaces. The formation of the single crystals is found to depend on the temperature. These findings provide a facile approach to the preparation of uniform single crystals in large quantities.

  相似文献   


11.
Hierarchical nanoporous structures are fabricated by adsorption of micelles of diblock copolymer‐templated Au‐nanoparticles onto a hydrophilic solid substrate. Gold nanoparticles are prepared using micelles (19 nm) of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) as nanoreactors. Deposition of thin films of the micellar solution, modified with a non‐selective solvent (THF), on hydrophilic surfaces leads to the formation of hierarchical nanoporous morphologies. The thin films exhibit two different pore diameters and a total pore density of 15 × 108 holes per cm2. The structure was analyzed in terms of topography and chemical composition using AFM, TEM and XPS measurements. The PS‐b‐P4VP template was subsequently removed by oxygen plasma etching, to leave behind metallic nanopores that mimic the original thin film morphology.

  相似文献   


12.
We report here on the formation of hybrid compound block copolymer micelles encapsulating gold nanoparticles, utilizing a direct and general preparation method. The giant hybrid compound micelles are structured with micelles of PS‐b‐P2VP with gold nanoparticles in their P2VP core and PI‐b‐PS chains as the outer part of the compound micelles. The gold nanoparticles were produced using gold ion‐loaded PS‐b‐P2VP micelles as a nanoreactor, in a PS selective solvent (toluene), by the subsequent reduction of gold ions. The synthesis of the gold nanoparticles was monitored by UV‐vis spectroscopy. The gold containing micelles were then encapsulated in larger micelles of PI‐b‐PS copolymer, by successive utilization of toluene and heptane with the intermediate evaporation of toluene. The nanoassembly of the compound materials comprised a PI corona and a PS compound core, with P2VP/Au0 domains, and was characterized using UV‐vis spectroscopy, dynamic light scattering and transmission electron microscopy.

  相似文献   


13.
Blends of polystyrene/poly(methyl methacrylate) (PS/PMMA) (30/70) prepared by simple melt mixing form a droplet (PS) in‐matrix (PMMA) morphology. It is found that addition of a carefully designed copolymer PS‐b‐P(S‐ran‐MMA) (SSM) compatibilizer could convert the morphology into a co‐continuous system. Indeed, the continuity of the dispersed PS phase increased with an increase in PS‐b‐P(S‐ran‐MMA) content, and a fully co‐continuous morphology (continuity = 100%) was obtained at 20% SSM fraction with a characteristic size of 100 nm.

  相似文献   


14.
Large scale of well‐ordered macroporous π‐conjugated polymer monoliths have been successfully prepared through a new approach using micrometer‐sized naphthalene crystals as templates. The macroporous monoliths of poly(p‐phenylenevinylene) (PPV) and poly(p‐phenyleneethynylene) (PPE) grew along the unidirectional freezing direction inside the template naphthalene crystals which lead to the formation of controlling morphologies and homogeneous diameters. The polymer monoliths show straight and lamella macroporous structures. The diameters of pores and the thickness of pore walls can be controlled by tuning the freezing temperature.

  相似文献   


15.
Worm‐like aggregates with a PAA/P4VP complex core and a PEG/PNIPAM mixed shell were prepared in ethanol by the comicellization of poly(ethylene glycol)‐block‐poly(acrylic acid) (PEG‐b‐PAA) and poly(N‐isopropylacrylamide)‐block‐poly(4‐vinylpyridine) (PNIPAM‐b‐P4VP) through hydrogen‐bonding. The formed aggregates were studied by dynamic light scattering, static light scattering, 1H NMR, and transmission electron microscopy. The length of worm‐like aggregates could be adjusted by changing the weight ratio of W(PNIPAM‐b‐P4VP)/W(PEG‐b‐PAA). When the ratio changed from 20 to 150%, the length changed from about 100 nm to several microns, and the diameter stayed almost unchanged at about 15 nm.

  相似文献   


16.
We have studied the kinetics of polymeric nanoparticle formation for poly(styrene‐block‐4‐vinylpyridine) [P(S‐b‐4‐VPy)], chains in a non‐selective solvent using 1,4‐dibromobutane (DBB) as a cross‐linker by means of different nuclear magnetic resonance (NMR) spectroscopy techniques. The kinetic process was followed using 1H, 13C, and 2‐D Heteronuclear Single Quantum Correlation (HSQC) NMR experiments. The kinetic data obtained from 2‐D HSQC and 1H NMR experiments were in good agreement between them, proving the reliability of the 2‐D HSQC NMR technique for the in situ study of the kinetics of core‐shell nanoparticle formation. A value of 1.5 × 10−5 s−1 was determined for the apparent kinetic constant of the P(S‐b‐4‐VPy)‐DBB core‐shell nanoparticle formation process.

  相似文献   


17.
Metallo‐supramolecular core cross‐linked (CCL) micelles are fabricated from terpyridine‐functionalized double hydrophilic block copolymers, poly(2‐(2‐methoxyethoxy)ethyl methacrylate)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐4′‐(6‐methacryloxyhexyloxy)‐2,2′:6′,2″‐terpyridine) [PMEO2MA‐b‐P(DEA‐co‐TPHMA)] via the formation of bis(terpyridine)ruthenium(II) complexes. These metallo‐supramolecular CCL micelles exhibit not only high structural integrity under different pH values and temperatures in aqueous solution, but multistimuli responsiveness including pH‐responsive cores, thermo‐responsive shells, and reversible dissociation of bis(terpyridine)ruthenium(II) complexes upon addition of competitive metal ion chelator, which allows for precisely controlled release of the encapsulated hydrophobic guest molecules via the combination of different stimuli.

  相似文献   


18.
This paper describes a new approach towards preparing self‐assembled hydrogen‐bonded complexes that have vesicle and patched spherical structures from two species of block copolymer in non‐selective solvents. The assembly of vesicles from the intermolecular complex formed after mixing polystyrene‐block‐poly(4‐vinyl phenol) (PS‐b‐PVPh) with poly(methyl methacrylate)‐block‐poly(4‐vinylpyridine) (PMMA‐b‐P4VP) in tetrahydrofuran (THF) is driven by strong hydrogen bonding between the complementary binding sites on the PVPh and P4VP blocks. In contrast, well‐defined patched spherical micelles form after blending PS‐b‐PVPh with PMMA‐b‐P4VP in N,N‐dimethylformamide (DMF): weaker hydrogen bonds form between the PVPh and P4VP blocks in DMF, relative to those in THF, which results in the formation of spherical micelles that have compartmentalized coronas that consist of PS and PMMA blocks.

  相似文献   


19.
A strain‐induced microphase morphology has been established by the melt drawing process in a high molecular weight asymmetric polystyrene‐block‐poly(vinyl‐2‐pyridine) (PS‐b‐P2VP) diblock copolymer. For the first time to the best knowledge of the authors, the melt drawing process has been applied to block copolymers to produce free‐standing, ultrathin block copolymer films with a thickness of ≈100 nm. Intriguingly, during the melt drawing of the polymer a global strain‐induced unidirectional order of the microphase separated needle‐like domains of the block copolymer was generated. This morphology consists of a PS matrix with embedded highly oriented P2VP needle‐like domains oriented parallel to the drawing direction. The needle‐like morphology is explained by a simplified extended chain model of the diblock copolymer chains. Annealing of the films leads to a transition from the strain‐induced needle‐like morphology toward the quasi‐equilibrium sphere‐like morphology.

  相似文献   


20.
Summary: Nanostructured thermosetting materials were prepared by modification of an epoxy resin with 30 wt.‐% epoxidized polystyrene‐block‐polybutadiene copolymer (PS‐b‐PepB). The copolymer self‐assembles into a well‐defined hexagonal nanoordered structure, of around 30‐nm diameter, thus establishing its use as structure‐directing agent to generate nanostructured thermosetting materials. The study confirms pathways towards tailoring interactions between thermosetting matrices and immiscible block copolymers by using the concept of functionalization to build nanostructured polymer matrices.

Structure of diglycidyl ether of bisphenol‐A/4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline) cured blend containing 30 wt.‐% PS‐b‐PepB61 block copolymer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号