共查询到20条相似文献,搜索用时 0 毫秒
1.
Awanish Mishra Pragya Shakti Mishra Ritam Bandopadhyay Navneet Khurana Efthalia Angelopoulou Yam Nath Paudel Christina Piperi 《Molecules (Basel, Switzerland)》2021,26(21)
Chrysin, a herbal bioactive molecule, exerts a plethora of pharmacological effects, including anti-oxidant, anti-inflammatory, neuroprotective, and anti-cancer. A growing body of evidence has highlighted the emerging role of chrysin in a variety of neurological disorders, including Alzheimer’s and Parkinson’s disease, epilepsy, multiple sclerosis, ischemic stroke, traumatic brain injury, and brain tumors. Based on the results of recent pre-clinical studies and evidence from studies in humans, this review is focused on the molecular mechanisms underlying the neuroprotective effects of chrysin in different neurological diseases. In addition, the potential challenges, and opportunities of chrysin’s inclusion in the neurotherapeutics repertoire are critically discussed. 相似文献
2.
Capsaicin is a natural compound found in chili peppers and is used in the diet of many countries. The important mechanism of action of capsaicin is its influence on TRPV1 channels in nociceptive sensory neurons. Furthermore, the beneficial effects of capsaicin in cardiovascular and oncological disorders have been described. Many recent publications show the positive effects of capsaicin in animal models of brain disorders. In Alzheimer’s disease, capsaicin reduces neurodegeneration and memory impairment. The beneficial effects of capsaicin in Parkinson’s disease and depression have also been described. It has been found that capsaicin reduces the area of infarction and improves neurological outcomes in animal models of stroke. However, both proepileptic and antiepileptic effects of capsaicin in animal models of epilepsy have been proposed. These contradictory results may be caused by the fact that capsaicin influences not only TRPV1 channels but also different molecular targets such as voltage-gated sodium channels. Human studies show that capsaicin may be helpful in treating stroke complications such as dysphagia. Additionally, this compound exerts pain-relieving effects in migraine and cluster headaches. The purpose of this review is to discuss the mechanisms of the beneficial effects of capsaicin in disorders of the central nervous system. 相似文献
3.
Varun Gopinatth Rufa L. Mendez Elaine Ballinger Jung Yeon Kwon 《Molecules (Basel, Switzerland)》2021,26(7)
Tuna backbone peptide (TBP) has been reported to exert potent inhibitory activity against lipid peroxidation in vitro. Since this bears relevant physiological implications, this study was undertaken to assess the impact of peptide modifications on its bioactivity and other therapeutic potential using in vitro and in silico approach. Some TBP analogs, despite lower purity than the parent peptide, exerted promising antioxidant activities in vitro demonstrated by ABTS radical scavenging assay and cellular antioxidant activity assay. In silico digestion of the peptides resulted in the generation of antioxidant, angiotensin-converting enzyme (ACE), and dipeptidyl peptidase-IV (DPPIV) inhibitory dipeptides. Using bioinformatics platforms, we found five stable TBP analogs that hold therapeutic potential with their predicted multifunctionality, stability, non-toxicity, and low bitterness intensity. This work shows how screening and prospecting for bioactive peptides can be improved with the use of in vitro and in silico approaches. 相似文献
4.
Xiangchun Ruan Jidong Hu Lianshou Lu Youwei Wang Chunlian Tang Faquan Liu Xiuge Gao Li Zhang Hao Wu Xianhui Huang Qing Wei 《Molecules (Basel, Switzerland)》2022,27(10)
Moxidectin (MXD) is an antiparasitic drug used extensively in veterinary clinics. In this study, to develop a new formulation of MXD, a thermosensitive gel of MXD (MXD-TG) was prepared based on poloxamer 407/188. Furthermore, the gelation temperature, the stability, in vitro release kinetics and in vivo pharmacokinetics of MXD-TG were evaluated. The results showed that the gelation temperature was approximately 27 °C. MXD-TG was physically stable and can be released continuously for more than 96 h in vitro. The Korsmeyer–Peppas model provided the best fit to the release kinetics, and the release mechanism followed a diffusive erosion style. MXD-TG was released persistently for over 70 days in sheep. Part of pharmacokinetic parameters had a difference in female and male sheep (p < 0.05). It was concluded that MXD-TG had a good stability, and its release followed the characteristics of a diffusive erosion style in vitro and a sustained release pattern in vivo. 相似文献
5.
Hamza Mechchate Imane Es-safi Omkulthom Mohamed Al kamaly Dalila Bousta 《Molecules (Basel, Switzerland)》2021,26(7)
Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results. 相似文献
6.
I. Kraicheva E. Vodenicharova B. Shivachev R. Nikolova A. Kril M. Topashka-Ancheva 《Phosphorus, sulfur, and silicon and the related elements》2013,188(11):1535-1547
Abstract The X-ray crystal structures of the anthracene-derived bis-aminophosphonates 4.4′-bis[N-methyl(diethoxyphosphonyl)-1-(9-anthryl)]diaminodiphenylmethane (1) and 1,3-bis [N-methyl(diethoxyphosphonyl)-1-(9-anthryl)]diaminobenzene (3) are reported. The X-ray analyses demonstrated that both compounds crystallize in a centrosymmetric manner containing a meso-form (1) and a pair of enantiomers (3). The cytotoxic potential, genotoxicity, and antiproliferative activity of bis-aminophosphonates 1 and bis[N-methyl(diethoxyphosphonyl)-1-(9-anthryl)]benzidine (2), as well as their subcellular distribution in a tumor cell culture system, are also discussed. Compounds 1 and 2 showed optimal antiproliferative activity to human tumor cells from colon carcinoma line HT-29. In vitro and in vivo safety testing revealed that the compounds exert lower toxicity to normal cells as compared with well-known anticancer and cytotoxic agents. Supplemental materials are available for this article. Go to the publisher's online edition ofPhosphorus, Sulfur, and Silicon and the Related Elementsto view the free supplemental file. 相似文献
7.
Guru R. Valicherla Roshan A. Katekar Shailesh Dadge Mohammed Riyazuddin Anees A. Syed Sandeep K. Singh Athar Husain Muhammad Wahajuddin Jiaur R. Gayen 《Molecules (Basel, Switzerland)》2022,27(2)
PSTi8 is a pancreastatin inhibitory peptide that is effective in the treatment of diabetic models. This study investigates the pharmacokinetic (PK) properties of PSTi8 in Sprague Dawley rats, for the first time. In vitro and in vivo PK studies were performed to evaluate the solubility, stability in plasma and liver microsomes, plasma protein binding, blood–plasma partitioning, bioavailability, dose proportionality, and gender difference in PK. Samples were analyzed using the validated LC-MS/MS method. The solubility of PSTi8 was found to be 9.30 and 25.75 mg/mL in simulated gastric and intestinal fluids, respectively. The protein binding of PSTi8 was estimated as >69% in rat plasma. PSTi8 showed high stability in rat plasma and liver microsomes and the blood–plasma partitioning was >2. The bioavailability of PSTi8 after intraperitoneal and subcutaneous administration was found to be 95.00 ± 12.15 and 78.47 ± 17.72%, respectively, in rats. PSTi8 showed non-linear PK in dose proportionality studies, and has no gender difference in the PK behavior in rats. The high bioavailability of PSTi8 can be due to high water solubility and plasma protein binding, low clearance and volume of distribution. Our in vitro and in vivo findings support the development of PSTi8 as an antidiabetic agent. 相似文献
8.
Lina T. Al Kury Aya Abdoh Kamel Ikbariah Bassem Sadek Mohamed Mahgoub 《Molecules (Basel, Switzerland)》2022,27(1)
Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia. 相似文献
9.
Maya M. Zaharieva Lyudmila L. Dimitrova Stanislav Philipov Ivanka Nikolova Neli Vilhelmova Petar Grozdanov Nadya Nikolova Milena Popova Vassya Bankova Spiro M. Konstantinov Dimitrina Zheleva-Dimitrova Hristo M. Najdenski 《Molecules (Basel, Switzerland)》2022,27(1)
This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC–HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33–25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC–HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations. 相似文献
10.
Toxicological Screening of Four Bioactive Citroflavonoids: In Vitro,In Vivo,and In Silico Approaches
Rolffy Ortiz-Andrade Jesús Alfredo Araujo-Len Amanda Snchez-Recillas Gabriel Navarrete-Vazquez Avel Adolfo Gonzlez-Snchez Sergio Hidalgo-Figueroa ngel Josabad Alonso-Castro Irma Aranda-Gonzlez Emanuel Hernndez-Núez Tania Isolina Coral-Martínez Juan Carlos Snchez-Salgado Victor Yez-Prez M. A. Lucio-Garcia 《Molecules (Basel, Switzerland)》2020,25(24)
Many studies describe different pharmacological effects of flavonoids on experimental animals and humans. Nevertheless, few ones are confirming the safety of these compounds for therapeutic purposes. This study aimed to investigate the preclinical safety of naringenin, naringin, hesperidin, and quercetin by in vivo, in vitro, and in silico approaches. For this, an MTT-based cytotoxicity assay in VERO and MDCK cell lines was performed. In addition, acute toxicity was evaluated on Wistar rats by OECD Guidelines for the Testing of Chemicals (Test No. 423: Acute Oral Toxicity-Class Method). Furthermore, we used the ACD/Tox Suite to predict toxicological parameters such as hERG channel blockade, CYP450 inhibition, and acute toxicity in animals. The results showed that quercetin was slightly more cytotoxic on cell lines (IC50 of 219.44 ± 7.22 mM and 465.41 ± 7.44 mM, respectively) than the other citroflavonoids. All flavonoids exhibited an LD50 value > 2000 mg/kg, which classifies them as low-risk substances as OECD guidelines established. Similarly, predicted LD50 was LD50 > 300 to 2000 mg/kg for all flavonoids as acute toxicity assay estimated. Data suggests that all these flavonoids did not show significant toxicological effects, and they were classified as low-risk, useful substances for drug development. 相似文献
11.
Leila Elyasi Jessica M. Rosenholm Fatemeh Jesmi Mehrdad Jahanshahi 《Molecules (Basel, Switzerland)》2022,27(19)
Neurodegenerative diseases (NDDs) are the main cause of dementia in the elderly, having no cure to date, as the currently available therapies focus on symptom remission. Most NDDs will progress despite treatment and eventually result in the death of the patient after several years of a burden on both the patient and the caregivers. Therefore, it is necessary to investigate agents that tackle the disease pathogenesis and can efficiently slow down or halt disease progression, with the hope of curing the patients and preventing further burden and mortality. Accordingly, recent research has focused on disease-modifying treatments with neuroregenerative or neuroprotective effects. For this purpose, it is necessary to understand the pathogenesis of NDDs. It has been shown that oxidative stress plays an important role in the damage to the central nervous system and the progression of neurodegenerative disorders. Furthermore, mitochondrial dysfunction and the accumulation of unfolded proteins, including beta-amyloid (Aβ), tau proteins, and α-synuclein, have been suggested. Accordingly, cellular and molecular studies have investigated the efficacy of several natural compounds (herbs and nutritional agents) for their neuroprotective and antioxidative properties. The most popular herbs suggested for the treatment and/or prevention of NDDs include Withania somnifera (ashwagandha), ginseng, curcumin, resveratrol, Baccopa monnieri, and Ginkgo biloba. In some herbs, such as ginseng, preclinical and clinical evidence are available for supporting its effectiveness; however, in some others, only cellular and animal studies are available. In line with the scant literature in terms of the effectiveness of herbal compounds on NDDs, there are also other herbal agents that have been disregarded. Picein is one of the herbal agents that has been investigated in only a few studies. Picein is the active ingredient of several herbs and can be thus extracted from different types of herbs, which makes it more available. It has shown to have anti-inflammatory properties in cellular and plant studies; however, to date, only one study has suggested its neuroprotective properties. Furthermore, some cellular studies have shown no anti-inflammatory effect of picein. Therefore, a review of the available literature is required to summarize the results of studies on picein. To date, no review study seems to have addressed this issue. Thus, in the present study, we gather the available information about the antioxidative and potential neuroprotective properties of picein and its possible effectiveness in treating NDDs. We also summarize the plants from which picein can be extracted in order to guide researchers for future investigations. 相似文献
12.
Ludmila F. de A. Fiuza Denise G. J. Batista Roberson D. Giro Fabian Hulpia Paula Finamore-Araújo Mustafa M. Aldfer Ehab Kotb Elmahallawy Harry P. De Koning Otacílio Moreira Serge Van Calenbergh Maria de Nazar C. Soeiro 《Molecules (Basel, Switzerland)》2022,27(22)
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is a serious public health problem. Current treatment is restricted to two drugs, benznidazole and nifurtimox, displaying serious efficacy and safety drawbacks. Nucleoside analogues represent a promising alternative as protozoans do not biosynthesize purines and rely on purine salvage from the hosts. Protozoan transporters often present different substrate specificities from mammalian transporters, justifying the exploration of nucleoside analogues as therapeutic agents. Previous reports identified nucleosides with potent trypanocidal activity; therefore, two 7-derivatized tubercidins (FH11706, FH10714) and a 3′-deoxytubercidin (FH8513) were assayed against T. cruzi. They were highly potent and selective, and the uptake of the tubercidin analogues appeared to be mediated by the nucleoside transporter TcrNT2. At 10 μM, the analogues reduced parasitemia >90% in 2D and 3D cardiac cultures. The washout assays showed that FH10714 sterilized the infected cultures. Given orally, the compounds did not induce noticeable mouse toxicity (50 mg/kg), suppressed the parasitemia of T. cruzi-infected Swiss mice (25 mg/kg, 5 days) and presented DNA amplification below the limit of detection. These findings justify further studies with longer treatment regimens, as well as evaluations in combination with nitro drugs, aiming to identify more effective and safer therapies for Chagas disease. 相似文献
13.
Elisabetta Coppi Federica Cherchi Martina Venturini Elena Lucarini Renato Corradetti Lorenzo Di Cesare Mannelli Carla Ghelardini Felicita Pedata Anna Maria Pugliese 《Molecules (Basel, Switzerland)》2022,27(6)
Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed. 相似文献
14.
The digestion rates of microalgal (docosahexaenoic acid, DHA, 56.8%; palmitic acid, 22.4%), fish (DHA, 10.8%; eicosapentaenoic acid, EPA, 16.2%), and soybean oils (oleic, 21.7%; linoleic acid, 54.6%) were compared by coupling the in vitro multi-step and in vivo apparent digestion models using mice. The in vitro digestion rate estimated based on the released free fatty acids content was remarkably higher in soybean and fish oils than in microalgal oil in 30 min; however, microalgal and fish oils had similar digestion rates at longer digestion. The in vivo digestibility of microalgal oil (91.49%) was lower than those of soybean (96.50%) and fish oils (96.99%). Among the constituent fatty acids of the diet oils, docosapentaenoic acid (DPA) exhibited the highest digestibility, followed by EPA, DHA, palmitoleic, oleic, palmitic, and stearic acid, demonstrating increased digestibility with reduced chain length and increased unsaturation degree of fatty acid. The diet oils affected the deposition of fatty acids in mouse tissues, and DHA concentrations were high in epididymal fat, liver, and brain of mice fed microalgal oil. In the present study, microalgal oil showed lower in vitro and in vivo digestibility, despite adequate DHA incorporation into major mouse organs, such as the brain and liver. 相似文献
15.
Neurodegenerative disorders (NDs) include Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) and the common feature of NDs is the progressive death of specific neurons in the brain. Apoptosis is very important in developing the nervous system, nonetheless an elevated level of cell death has been observed in the case of NDs. NDs are different in terms of their neuronal vulnerability and clinical manifestations, however they have some overlapping neurodegenerative pathways. It has been demonstrated by several studies with cell lines and animal models that apoptosis has a significant contribution to make in advancing AD, ALS, HD, and PD. Numerous dying neurons were also identified in the brains of individuals with NDs and these conditions were found to be linked with substantial cell loss along with common characteristics of apoptosis including activation of caspases and cysteine-proteases, DNA fragmentation, and chromatin condensation. It has been demonstrated that several therapeutic agents including antioxidants, minocycline, GAPDH ligands, p53 inhibitors, JNK (c-Jun N-Terminal Kinase) inhibitors, glycogen synthase kinase-3 inhibitor, non-steroidal anti-inflammatory drugs, D2 dopamine receptor agonists, FK506, cell cycle inhibitors, statins, drugs targeting peroxisome proliferator-activated receptors, and gene therapy have the potential to provide protection to neurons against apoptosis. Therefore, the use of these potential therapeutic agents might be beneficial in the treatment of NDs. In this review, we have summarized the pathways that are linked with apoptotic neuronal death in the case of various NDs. We have particularly focused on the therapeutic agents that have neuroprotective properties and the potential to regulate apoptosis in NDs. 相似文献
16.
Heba A. El Gizawy Sylvia A. Boshra Ahmed Mostafa Sara H. Mahmoud Muhammad I. Ismail Aisha A. Alsfouk Azza T. Taher Ahmed A. Al-Karmalawy 《Molecules (Basel, Switzerland)》2021,26(19)
In response to the urgent need to control Coronavirus disease 19 (COVID-19), this study aims to explore potential anti-SARS-CoV-2 agents from natural sources. Moreover, cytokine immunological responses to the viral infection could lead to acute respiratory distress which is considered a critical and life-threatening complication associated with the infection. Therefore, the anti-viral and anti-inflammatory agents can be key to the management of patients with COVID-19. Four bioactive compounds, namely ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were isolated from the leaves of Pimenta dioica (L.) Merr (ethyl acetate extract) and identified using spectroscopic evidence. Furthermore, molecular docking and dynamics simulations were performed for the isolated and identified compounds (1–4) against SARS-CoV-2 main protease (Mpro) as a proposed mechanism of action. Furthermore, all compounds were tested for their half-maximal cytotoxicity (CC50) and SARS-CoV-2 inhibitory concentrations (IC50). Additionally, lung toxicity was induced in rats by mercuric chloride and the effects of treatment with P. dioca aqueous extract, ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were recorded through measuring TNF-α, IL-1β, IL-2, IL-10, G-CSF, and genetic expression of miRNA 21-3P and miRNA-155 levels to assess their anti-inflammatory effects essential for COVID-19 patients. Interestingly, rutin 2, gallic acid 3, and chlorogenic acid 4 showed remarkable anti-SARS-CoV-2 activities with IC50 values of 31 µg/mL, 108 μg/mL, and 360 µg/mL, respectively. Moreover, the anti-inflammatory effects were found to be better in ferulic acid 1 and rutin 2 treatments. Our results could be promising for more advanced preclinical and clinical studies especially on rutin 2 either alone or in combination with other isolates for COVID-19 management. 相似文献
17.
Suzan Abdu Nouf Juaid Amr Amin Mohamed Moulay Nabil Miled 《Molecules (Basel, Switzerland)》2022,27(22)
Sorafenib is the first drug approved to treat advanced hepatocellular carcinoma (HCC) and continues as the gold-standard therapy against HCC. However, acquired drug resistance represents a main concern about sorafenib therapy. The flavanol quercetin found in plants has shown great anti-cancer and anti-inflammatory properties. In this work, quercetin was used as a therapeutic agent alone or in combination with a sorafenib chemotherapy drug to improve the routine HCC treatment with sorafenib. The in vitro and in vivo results presented here confirm that quercetin alone or in combination with sorafenib significantly inhibited HCC growth, induced cell cycle arrest and induced apoptosis and necrosis. Further molecular data shown in this report demonstrate that quercetin alone or combined with sorafenib downregulated key inflammatory, proliferative and angiogenesis-related genes (TNF-α, VEGF, P53 and NF-κB). Combined quercetin/sorafenib treatment markedly improved the morphology of the induced liver damage and showed significant antioxidant and anti-tumor effects. The advantage of combined treatment efficacy reported here can be attributed to quercetin’s prominent effects in modulating cell cycle arrest, apoptosis, oxidative stress and inflammation. 相似文献
18.
Endothelial cell dysfunction is considered to be one of the major causes of vascular complications in diabetes. Polyphenols are known as potent antioxidants that can contribute to the prevention of diabetes. Corn silk has been reported to contain polyphenols and has been used in folk medicine in China for the treatment of diabetes. The present study aims to investigate the potential protective role of the phenolic-rich fraction of corn silk (PRF) against injuries to vascular endothelial cells under high glucose conditions in vitro and in vivo. The protective effect of PRF from high glucose toxicity was investigated using human umbilical vein endothelial cells (HUVECs). The protective effect of PRF was subsequently evaluated by using in vivo methods in streptozotocin (STZ)-induced diabetic rats. Results showed that the PRF significantly reduced the cytotoxicity of glucose by restoring cell viability in a dose-dependent manner. PRF was also able to prevent the histological changes in the aorta of STZ-induced diabetic rats. Results suggested that PRF might have a beneficial effect on diabetic patients and may help to prevent the development and progression of diabetic complications such as diabetic nephropathy and atherosclerosis. 相似文献
19.
Mohamed S. Nafie Ahmed I. Khodair Hebat Allah Y. Hassan Noha M. Abd El-Fadeal Hanin A. Bogari Sameh S. Elhady Safwat A. Ahmed 《Molecules (Basel, Switzerland)》2022,27(1)
Background: Hepatocellular carcinoma (HCC) is one of the most widespread malignancies and is reported as the fourth most prevalent cause of cancer deaths worldwide. Therefore, we aimed to investigate the probable mechanistic cytotoxic effect of the promising 2-thioxoimidazolidin-4-one derivative on liver cancer cells using in vitro and in vivo approaches. The compounds were tested for the in vitro cytotoxic activity using MTT assay, and the promising compound was tested in colony forming unit assay, flow cytometric analysis, RT-PCR, Western blotting, in vivo using SEC-carcinoma and in silico to highlight the virtual mechanism of action. Both compounds 4 and 2 performed cytotoxic effects against HepG2 cells with IC50 values of 0.017 and 0.18 μM, respectively, compared to Staurosporine and 5-Fu as reference drugs with IC50 values of 5.07 and 5.18 µM, respectively. Compound 4 treatment revealed apoptosis induction by 19.35-fold (11.42% compared to 0.59% in control), arresting the cell cycle at G2/M phase. Moreover, studying gene expression that plays critical roles in cell cycle and apoptosis by RT-PCR demonstrated that compound 4 enhances the expression of the pro-apoptotic genes p53, PUMA, and Caspase 3, 8, and 9, and impedes the anti-apoptotic Bcl-2 gene in the HepG2 cells. It can also inhibit the PI3K/AKT pathway at both gene and protein levels, which was reinforced by the in silico predictions of the molecular docking simulations towards the PI3K/AKT proteins. Finally, in vivo study verified that compound 4 has a promising anti-cancer activity through activating antioxidant levels (CAT, SOD and GSH) and ameliorating hematological, biochemical, and histopathological findings. 相似文献
20.
Abdullah S. M. Aljohani Fahad A. Alhumaydhi Abdur Rauf Essam M. Hamad Umer Rashid 《Molecules (Basel, Switzerland)》2022,27(11)
Micromeria biflora, a traditional medicinal plant, is extensively used for treating various painful conditions, such as nose bleeds, wounds, and sinusitis. A phytochemical investigation of the chloroform fraction of Micromeria biflora led to the isolation of salicylalazine. Salicylalazine was assessed in vivo for analgesia, muscle relaxation, sedative, and anti-inflammatory properties, as well as in vitro for COX-1/2 inhibition activities. It was assessed against a hot plate-induced model at different doses. The muscle relaxant potential of salicylalazine was evaluated in traction and inclined screening models, while sedative properties were determined using an open-field model. The anti-inflammatory potential of salicylalazine was assessed in histamine and carrageenan-induced paw edema screening models. Salicylalazine exhibited significant analgesic potential in a dose-dependent manner. In both screening models, an excellent time-dependent muscle-relaxation effect was observed. Salicylalazine demonstrated excellent sedation at high doses. Its anti-inflammatory activity was determined through the initial and late phases of edema. It exhibited anticancer potential against NCI-H226, HepG2, A498, and MDR2780AD cell lines. In vitro, salicylalazine showed preferential COX-2 inhibition (over COX-1) with an SI value of 4.85. It was less effective in the initial phase, while, in the later phase, it demonstrated significant effects at 15 and 20 mg/kg doses compared with the negative control. Salicylalazine did not exhibit cytotoxicity in the MTT assay, preliminarily indicating its safety. 相似文献