首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Regioregular poly(3‐hexylthiophene) has been successfully incorporated into a novel amphiphilic block copolymer. The amphiphilic nature of poly(3‐hexylthiophene)‐block‐poly(acrylic acid) has been investigated using spectroscopic methods and has yielded solvatochromic behavior in several solvents of varying polarity. Evidence suggests that a supramolecular, long range ordering of block copolymer occurs in polar solvents, resulting in the formation of aggregates. Despite relatively large amounts of non‐conductive blocks, the poly(3‐hexylthiophene) diblock copolymer yields a high conductivity of 1 S · cm−1, and atomic force microscopy shows the formation of a highly organized nanofibrilar morphology in the solid state.

  相似文献   


2.
Nanophase‐separated, hydrophilic–hydrophobic multiblock copolymers are promising proton‐exchange‐membrane materials because of their ability to form various morphological structures that enhance transport. A series of poly(2,5‐benzophenone)‐activated, telechelic aryl fluoride oligomers with different block molecular weights were successfully synthesized by the Ni(0)‐catalyzed coupling of 2,5‐dichlorobenzophenone and the end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. These telechelic oligomers (hydrophobic) were then copolymerized with phenoxide‐terminated, disulfonated poly(arylene ether sulfone)s (hydrophilic) by nucleophilic, aromatic substitution to form hydrophilic–hydrophobic multiblock copolymers. High‐molecular‐weight multiblock copolymers with number‐average block lengths ranging from 3000 to 10,000 g/mol were successfully synthesized. Two separate glass‐transition temperatures were observed via differential scanning calorimetry in the transparent multiblock copolymer films when each block length was longer than 6000 g/mol. Tapping‐mode atomic force microscopy also showed clear nanophase separation between the hydrophilic and hydrophobic domains and the influence of the block length as it increased from 6000 to 10,000 g/mol. Transparent and creasable films were solvent‐cast and exhibited moderate proton conductivity and low water uptake. These copolymers are promising candidates for high‐temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 284–294, 2007  相似文献   

3.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

4.
We report the synthesis of a series of block copolymers consisting of a rod‐like semiconducting poly(2,5‐di(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene) (DEH‐PPV) block and a flexible poly(lactic acid) (PLA) block that can be selectively degraded under mild conditions. Such selectively degradable block copolymers are designed as self‐assembling templates for bulk heterojunction donor–acceptor layers in organic solar cells. A lamellar microphase‐separated domain structure was identified for block copolymers with PLA volume fractions between 29 and 79% in bulk and thin films using SAXS, TEM, and AFM. Depending on the ratio of the two blocks we find either lamellae oriented parallel or perpendicular to the substrate in thin films.

  相似文献   


5.
The preparation and characterization of macromolecular nanostructures possessing an amphiphilic core–shell morphology with a hydrophobic, fluidlike core domain with a low glass‐transition temperature are described. The nanostructures were prepared by the self‐assembly of polyisoprene‐b‐poly(acrylic acid) diblock copolymers into polymer micelles, followed by crosslinking of the hydrophilic shell layer via condensation between the acrylic acid functionalities and 2,2′‐(ethylenedioxy)bis(ethylamine), in the presence of 1‐(3′‐dimethylaminopropyl)‐3‐ethylcarbodiimide methiodide. The properties of the resulting shell‐crosslinked knedel‐like (SCK) nanoparticles were dependent on the microstructure and properties of the polyisoprene core domain. SCKs containing polyisoprene with a mixture of 3,4‐ and 1,2‐microstructures underwent little shape distortion upon adsorption from aqueous solutions onto mica or graphite. In contrast, when SCKs were composed of polyisoprene of predominantly cis‐1,4‐repeat units, the glass‐transition temperature was ?65 °C, and the nanospheres deformed to a large extent upon adsorption onto a hydrophilic substrate (mica). Adsorption onto graphite gave a less pronounced deformation, as determined by a combination of transmission electron microscopy and atomic force microscopy. Subsequent crosslinking of the core domain (in addition to the initial shell crosslinking) dramatically reduced the fluid nature and, therefore, reduced the SCK shape change. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1659–1668, 2003  相似文献   

6.
Amphiphilic core–shell nanostructures containing 19F stable isotopic labels located regioselectively within the core domain were prepared by a combination of atom transfer radical polymerization (ATRP), supramolecular assembly, and condensation‐based crosslinking. Homopolymers and diblock copolymers containing 4‐fluorostyrene and methyl acrylate were prepared by ATRP, hydrolyzed, assembled into micelles, and converted into shell‐crosslinked nanoparticles (SCKs) by covalent stabilization of the acrylic acid residues in the shell. The ATRP‐based polymerizations, producing the homopolymers and diblock copolymers, were initiated by (1‐bromoethyl)benzene in the presence of CuBr metal and employed N,N,N,N,N″‐pentamethyldiethylenetriamine as the coordinating ligand for controlled polymerizations at 75–90 °C for 1–3 h. Number‐average molecular weights ranged from 2000 to 60,000 Da, and molecular weight distributions, generally less than 1.1 and 1.2, were achieved for the homopolymers and diblock copolymers, respectively. Methyl acrylate conversions as high as 70% were possible, without observable chain–chain coupling reactions or molecular weight distribution broadening, when bromoalkyl‐terminated poly(4‐fluorostyrene) was used as the macroinitiator. Poly(4‐fluorostyrene), incorporated as the second segment in the diblock copolymer synthesis, was initiated from a bromoalkyl‐terminated poly(methyl acrylate) macroinitiator. After hydrolysis of the poly(methyl acrylate) block segments, micelles were formed from the resulting amphiphilic block copolymers in aqueous solutions and were then stabilized by covalent intramicellar crosslinking throughout the poly(acrylic acid) shells to yield SCKs. The SCK nanostructures on solid substrates were visualized by atomic force microscopy and transmission electron microscopy. Dynamic light scattering was used to probe the effects of crosslinking on the resulting hydrodynamic diameters of nanoparticles in aqueous and buffered solutions. The presence of fluorine atoms in the diblock copolymers and resulting SCK nanostructures allowed for characterization by 19F NMR in addition to 1H NMR, 13C NMR, and IR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4152–4166, 2001  相似文献   

7.
Summary: Poly(4‐vinylpyridinium) bromides containing octyl and dodecyl pendant groups were synthesized. Bromide anions in these polymer salts were substituted with dodecylsulfate and bis(2‐ethylhexylsuccinate) anions using ion‐exchange reactions. Initially, P4VP and its derivatives loaded with hydrophobic groups were deposited on a mica surface from diluted solutions in chloroform for visualization. Images of single adsorbed macromolecules were obtained using scanning force microscopy. Original P4VP chains form partially compacted self‐intersecting coils. Loading the polymer chains with large hydrophobic groups and especially the increase in the number of alkyl tails (see Figure) per monomer unit of the polymer chain leads to the stretching of the coils, and the comb‐like macromolecules adopt more and more extended self‐avoiding 2D conformations when deposited on the substrate.

Polymer chains with large hydrophobic groups and increasing number of alkyl tails per monomer unit of the polymer chain.  相似文献   


8.
9.
A polystyrene‐b‐poly(2‐vinylpyridine) block copolymer containing a methylhydridosilane linking group was chemically grafted to an 8‐trichlorosilyloctene monolayer via a simple one‐step hydrosilylation reaction. The resulting Y‐shaped thin film exhibited a low grafting density, which was characteristic of the grafting‐to technique. To further reduce the miscibility of the two arms, methyl iodide was reacted with the poly(2‐vinylpyridine) block to produce quaternary ammonium groups. The surfaces before and after quaternization were both solvent‐switchable when subjected to block‐selective solvents. Tensiometry, ellipsometry, attenuated total reflection/Fourier transform infrared, and atomic force microscopy were used to characterize the properties and morphology of both unquaternized and quaternized samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5608–5617, 2006  相似文献   

10.
Concentration dependent morphology of 3‐armed poly(ethylene glycol)‐b‐poly(ε‐caprolactone) copolymer aggregates in aqueous system was investigated by atomic force microscopy (AFM). The AFM results show that, at a low concentration, 4 × 10?5 g/mL, spherical micelles occur, and unmicellized molecules are not distributed homogeneously in the copolymer aqueous solution. Unequal outspread clusters composed of wormlike aggregates are formed at a moderate copolymer concentration, 4 × 10?4 g/mL, those wormlike aggregates are orderly packed in the clusters. At a high concentration of 0.05 g/mL, the copolymer aqueous system is indeed a gel at room temperature, outspread clusters of wormlike aggregates join together to forma network structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1412–1418, 2008  相似文献   

11.
The stereocomplex formation between enantioselective poly(lactide) (PLA) homopolymers is well understood. In this report an attempt is made to analyze the influence on the self‐assembling of the stereocomplex of enantiomorphic PLA‐PEG di‐ and tri‐blocks in different solvents. Powder diffraction studies showed the poly(ethylene glycol) (PEG) and the PLA blocks crystallize separately forming unique supra structures like rods, discs and coiled coils with dimensions in the micrometer scale in length and sub‐micrometer scale in diameter. The influence of the solvents on the crystal formation was shown in the formation of uniform structures. Discs emerged from equimolar mixtures of the D ‐ and L ‐configured di‐ and tri‐block copolymers, in dioxan and acetonitrile and in water the stereocomplexes crystallized mainly as rods. In some cases the rods were observed as coiled coils. The shape, the hydrophobic/hydrophilic content and the PEG coated surface of the discs give them a future potential as matrix for the controlled and targeted delivery of bioactive agents. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Sulfonated multiblock copoly(ether sulfone)s applicable to proton exchange membrane fuel cells (PEMFCs) were synthesized by the coupling reaction of the hydroxyl‐terminated hydrophilic and hydrophobic oligomers with different lengths in the presence of highly reactive decafluorobiphenyl (DFB) as a chain extender to investigate the influence of each length on the membranes' properties, such as water uptake, proton conductivity, and morphology. Multiblock copolymers with high molecular weights (Mn > 50,000, Mw > 150,000) were obtained under mild reaction conditions. The resulting membranes demonstrated good oxidative stability for hot Fenton's reagent and maintained high water uptake (7.3–18.7 wt %) under a low relative humidity (50% RH). Proton conductivity of all membranes at 80 °C and 95% RH was higher than that of Nafion 117 membrane, and good proton conductivity of 7.0 × 10?3 S/cm was obtained at 80 °C and 50% RH by optimizing the oligomer lengths. The surface morphology of the membranes was investigated by tapping mode atomic force microscopy (AFM), which showed that the multiblock copolymer membranes had a clearer surface hydrophilic/hydrophobic‐separated structure than that of the random copolymer, and contributed to good and effective proton conduction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7332–7341, 2008  相似文献   

13.
Novel crosslinked anion exchange membranes based on poly(phthalazinone ether ketone) (PPEK) were successfully prepared through chloromethylation, quaternization, membrane casting and OH‐ ionic exchange reaction from the quaternized PPEK (QPPEK) membrane. The quaternization was performed with N‐methylimidazolium (MIm) as ammonium agent and tetramethylethylenediamine (TMEDA) as crosslinking agent. The ion‐exchange capacity, swelling ratio (SR), water uptake (WU), and ionic conductivity of the QPPEK alkaline membranes have been systematically investigated. The results showed that QPPEK membranes have a high hydroxide conductivity and very low SR. For the QPPEK‐4 alkaline membrane with ion‐exchange capacity (IEC) 2.63 mmol/g, the WU was 35.8%, and the hydroxide conductivity was 0.028 S/cm at 30 °C and 0.032 S/cm at 70 °C, while its SR was only 7.6%. The thermal properties of the QPPEK alkaline membrane and CMPPEK were characterized using thermo‐gravimetric analysis measurements in a nitrogen atmosphere. The alkaline resistance of membrane QPPEK ?4 was also briefly investigated in 6 M KOH at 60 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1632–1638  相似文献   

14.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


16.
Novel thermally crosslinkable fluorine‐containing poly(arylene ether ketone)s comprised of 2,3,5, 6‐tetrafluoro‐1,4‐phenylene moiety were synthesized by the termination of polymer chain ends with propargyl ether groups in order to improve solvent resistance. Crosslinking reaction occurred over 250°C through the formation of both chromen ring and polyene structure. This structure change brought about not only the outstanding solvent resistance but also the increase in glass transition temperature (Tg). The cured films also exhibited excellent thermal stability, transparency and hydrophobicity derived from fluorine atoms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Directly copolymerized wholly aromatic sulfonated poly(arylene ether sulfone) copolymers derived from 4,4′‐biphenol, 4,4′‐dichlorodiphenyl sulfone, 3,3′‐disulfonated, and 4,4′‐dichlorodiphenyl sulfone (BPSH) were evaluated as proton‐exchange membranes for elevated temperature operation (100–140 °C). Acidification of the copolymer from the sulfonated form after the nucleophilic step (condensation) copolymerization involved either immersing the solvent‐cast membrane in sulfuric acid at 30 °C for 24 h and washing with water at 30 °C for 24 h (method 1) or immersion in sulfuric acid at 100 °C for 2 h followed by similar water treatment at 100 °C for 2 h (method 2). The fully hydrated BPSH membranes treated by method 2 exhibited higher proton conductivity, greater water absorption, and less temperature dependence on proton conductivity as compared with the membranes acidified at 30 °C. In contrast, the conductivity and water absorption of a control perfluorosulfonic acid copolymer (Nafion 1135) were invariant with treatment temperature; however, the conductivity of the Nafion membranes at elevated temperature was strongly dependent on heating rate or temperature. Tapping‐mode atomic force microscope results demonstrated that all of the membranes exposed to high‐temperature conditions underwent an irreversible change of the ionic domain microstructure, the extent of which depended on the concentration of sulfonic acid sites in the BPSH system. The effect of aging membranes based on BPSH and Nafion at elevated temperature on proton conductivity is also discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2816–2828, 2003  相似文献   

18.
A new type of polymeric hybrid coating is created by layer‐by‐layer deposition of polyelectrolyte multilayers (PEM) onto nano‐patterned polymer brushes (NPB). The PEM is a hydrogen‐bonded multilayer consisting of poly(acrylic acid) and poly(acrylamide) and the NPB is derived from a surface reactive rod‐coil block copolymer, polystyrene‐block‐poly[3‐(triethoxysilyl)propylisocyanate]. The thickness of the PEM coating is optimized with respect to the height of the NPB mounds, to yield PEM/NPB hybrid coatings with unique nano‐embossed or nano‐porous structures that can be interchangeable by heating and moisture annealing. The hybrid coating is patternable by the micro‐contact printing method. The results demonstrate that the combination of surface‐bound, hydrophobic NPB layer with hydrophilic PEM films at the nanoscopic level offers a new organic hybrid coating with novel surface properties.

  相似文献   


19.
聚醚砜醚酮的合成与性能   总被引:1,自引:1,他引:1  
以4,4′-二羟基二苯砜和4,4′-二氟二苯酮为单体, 通过溶液缩聚合成了聚醚砜醚酮(PESEK), 其分子结构相当于聚醚砜(PES)与聚醚醚酮(PEEK)的交替共聚物. 在共聚物分子中, 存在砜基、醚基和酮基, 整个结构单元形成了大共轭体系, 聚合物属无定形聚合物, 玻璃化转变温度(Tg)为198 ℃, 介于PEEK和PES的Tg之间, 其热稳定性和加工性能优于PES, 而力学性能与PES接近.  相似文献   

20.
Summary: Progress in the development of a redox‐driven macromolecular motor and the characterization of its redox‐mechanical cycle using electrochemical AFM‐based single‐molecule force spectroscopy (SMFS) is described. The elasticities of individual neutral and oxidized poly(ferrocenyldimethylsilane) (PFS) macromolecules were reversibly controlled in situ by adjusting the potential in electrochemical SMFS experiments. For the operating cycle of one individual PFS‐based molecular motor, an output of 3.4 × 10−19 J and an efficiency of 5% have been estimated.

Force‐extension curves of a single‐molecule motor.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号